ﻻ يوجد ملخص باللغة العربية
In this paper we investigate deterministic diffusion in systems which are spatially extended in certain directions but are restricted in size and open in other directions, consequently particles can escape. We introduce besides the diffusion coefficient D on the chaotic repeller a coefficient ${hat D}$ which measures the broadening of the distribution of trajectories during the transient chaotic motion. Both coefficients are explicitly computed for one-dimensional models, and they are found to be different in most cases. We show furthermore that a jump develops in both of the coefficients for most of the initial distributions when we approach the critical borderline where the escape rate equals the Liapunov exponent of a periodic orbit.
One-dimensional maps exhibiting transient chaos and defined on two preimages of the unit interval [0,1] are investigated. It is shown that such maps have continuously many conditionally invariant measures $mu_{sigma}$ scaling at the fixed point at x=
Motivated by electronic transport in graphene-like structures, we study the diffusion of a classical point particle in Fermi potentials situated on a triangular lattice. We call this system a soft Lorentz gas, as the hard disks in the conventional pe
To characterize local finite-time properties associated with transient chaos in open dynamical systems, we introduce an escape rate and fractal dimensions suitable for this purpose in a coarse-grained description. We numerically illustrate that these
We characterize a transition from normal to ballistic diffusion in a bouncing ball dynamics. The system is composed of a particle, or an ensemble of non-interacting particles, experiencing elastic collisions with a heavy and periodically moving wall
The interaction of a quantized electromagnetic field in a cavity with a set of two-level atoms inside can be described with algebraic Hamiltonians of increasing complexity, from the Rabi to the Dicke models. Their algebraic character allows, through