ﻻ يوجد ملخص باللغة العربية
The interaction of a quantized electromagnetic field in a cavity with a set of two-level atoms inside can be described with algebraic Hamiltonians of increasing complexity, from the Rabi to the Dicke models. Their algebraic character allows, through the use of coherente states, a semiclassical description in phase space, where the non-integrable Dicke model has regions associated with regular and chaotic motion. The appearance of classical chaos can be quantified calculating the largest Lyapunov exponent in the whole available phase space for a given energy. In the quantum regime, employing efficient diagonalization techniques, we are able to perform a detailed quantitative study of the regular and chaotic regions, where the quantum Participation Ratio (PR) of coherent states on the eigenenergy basis plays a role equivalent to the Lyapunov exponent. It is noted that, in the thermodynamic limit, dividing the Participation Ratio by the number of atoms leads to a positive value in chaotic regions, while it tends to zero in the regular ones.
Mean fidelity amplitude and parametric energy--energy correlations are calculated exactly for a regular system, which is subject to a chaotic random perturbation. It turns out that in this particular case under the average both quantities are identic
High resolution experiments have recently lead to a complete identification (energy, spin, and parity) of 151 nuclear levels up to an excitation Energy of Ex= 6.20 MeV in 208Pb. We present a thorough study of the fluctuation properties in the energy
We calculate the band structure of ultracold atoms located inside a laser-driven optical cavity. For parameters where the atom-cavity system exhibits bistability, the atomic band structure develops loop structures akin to the ones predicted for Bose-
We propose a new method for frequency conversion of photons which is both versatile and deterministic. We show that a system with two resonators ultrastrongly coupled to a single qubit can be used to realize both single- and multiphoton frequency-con
We study the influence of a chaotic environment in the evolution of an open quantum system. We show that there is an inverse relation between chaos and non-Markovianity. In particular, we remark on the deep relation of the short time non-Markovian be