ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray Nova XTE J1550-564: Optical Observations

116   0   0.0 ( 0 )
 نشر من قبل Raj K. Jain
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. K. Jain




اسأل ChatGPT حول البحث

We report the identification of the optical counterpart of the X-ray transient XTE J1550-564 described in two companion papers by Sobczak et al (1999) and Remillard et al (1999). We find that the optical source brightened by approximately 4 magnitudes over the quiescent counterpart seen at B~22 on a SERC survey plate, and then decayed by approximately 1.5 magnitudes over the 7 week long observation period. There was an optical response to the large X-ray flare described by Sobczak et al (1999), but it was much smaller and delayed by roughly 1 day.



قيم البحث

اقرأ أيضاً

269 - R.A. Remillard 1999
We have investigated the X-ray timing properties of XTE J1550-564 during 60 RXTE PCA observations made between 1998 September 18 and November 28. We detect quasi-periodic oscillations (QPOs) near 185 Hz during four time intervals. The QPO widths (FWH M) are near 50 Hz, and the rms amplitudes are about 1% of the mean flux at 2-30 keV. This is the third Galactic black hole candidate known to exhibit a transient X-ray timing signature above 50 Hz, following the 67 Hz QPO in GRS1915+105 and the 300 Hz QPO in GRO J1655-40. However, unlike the previous cases, which appear to show stationary frequencies, the QPO frequency in XTE J1550-564 must vary by at least 10% to be consistent with observations. The occurrences and properties of the QPO were insensitive to large changes in the X-ray intensity (1.5 to 6.8 Crab). However, the QPO appearance was accompanied by changes in the energy spectrum, namely, an increase in the temperature and a decrease in the normalization of the thermal component. The QPO is also closely related to the hard X-ray power-law component of the energy spectrum since the fractional amplitude of the QPO increases with photon energy. The fast QPOs in accreting black hole binaries are thought to be effects of general relativity; however, the relevance of the specific physical models that have been proposed remains largely uncertain. Low frequency QPOs in the range 3-13 Hz were often observed. Occasionally at high luminosity the rms QPO amplitude was 15% of the flux, a level previously reached only by GRS1915+105.
89 - D. Hannikainen 2001
We report multifrequency radio observations of XTE J1550-564 obtained with the Molonglo Observatory Synthesis Telescope and the Australia Telescope Compact Array at the time of its discovery and subsequent hard and soft X-ray outburst in 1998 Septemb er. A large radio flare was observed, peaking about 1.8 days after the X-ray flare. In addition, we present Australian Long Baseline Array images obtained shortly after the maximum of the radio flare which show evolving structure. The apparent separation velocity of the two outermost components is v>2c.
59 - V. A. Arefiev 2004
Results of broadband INTEGRAL and RXTE observations of the Galactic microquasar XTE J1550-564 during outburst in spring 2003 are presented. During the outburst the source was found in a canonical low/hard spectral state.
100 - Raj K. Jain 2000
We report optical monitoring of the soft X-ray transient XTE J1550-564 during the 1999 season (4 January 1999 to 24 August 1999). The first optical observations available in 1999 show that the peak ``re-flare brightness had exceeded the peak brightne ss of the initial optical flare in September 1998 by over half a magnitude. We compare the optical re-flare light curves with the total X-ray flux, the power-law flux and disk flux light curves constructed from the spectral fits to RXTE/PCA data made by Sobczak et al. (1999, 2000). During the first 60 days of the observed optical re-flare, we find no correspondence between the thermal component of the X-rays often associated with a disk and the optical flux -- the former remains essentially flat whereas the latter declines exponentially and exhibits three substantial dips. However, the power law flux is anti-correlated with the optical dips, suggesting that the optical flux may by up-scattered into the X-ray by the hot corona. Periodic modulations were discovered during the final stage of the outburst (May to June), with P=1.546+/-0.038 days, and during quiescence (July and August), with P=1.540+/-0.008 days. The analysis of the combined data set reveals a strong signal for a unique period at P=1.541+/-0.009 days, which we believe to be the orbital period.
We explore the accretion properties of the black hole X-ray binary j1550 during its outbursts in 1998/99 and 2000. We model the disk, corona, and reflection components of X-ray spectra taken with the {it Rossi X-ray Timing Explorer} (rxte), using the {tt relxill} suite of reflection models. The key result of our modeling is that the reflection spectrum in the very soft state is best explained by disk self-irradiation, i.e., photons from the inner disk are bent by the strong gravity of the black hole, and reflected off the disk surface. This is the first known detection of thermal disk radiation reflecting off the inner disk. There is also an apparent absorption line at $sim6.9$ keV which may be evidence of an ionized disk wind. The coronal electron temperature ($kT_{rm e}$) is, as expected, lower in the brighter outburst of 1998/99, explained qualitatively by more efficient coronal cooling due to irradiating disk photons. The disk inner radius is consistent with being within a few times the innermost stable circular orbit (ISCO) throughout the bright-hard-to-soft states (10s of $r_{rm g}$ in gravitational units). The disk inclination is low during the hard state, disagreeing with the binary inclination value, and very close to $90^{circ}$ in the soft state, recovering to a lower value when adopting a blackbody spectrum as the irradiating continuum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا