ﻻ يوجد ملخص باللغة العربية
We explore the accretion properties of the black hole X-ray binary j1550 during its outbursts in 1998/99 and 2000. We model the disk, corona, and reflection components of X-ray spectra taken with the {it Rossi X-ray Timing Explorer} (rxte), using the {tt relxill} suite of reflection models. The key result of our modeling is that the reflection spectrum in the very soft state is best explained by disk self-irradiation, i.e., photons from the inner disk are bent by the strong gravity of the black hole, and reflected off the disk surface. This is the first known detection of thermal disk radiation reflecting off the inner disk. There is also an apparent absorption line at $sim6.9$ keV which may be evidence of an ionized disk wind. The coronal electron temperature ($kT_{rm e}$) is, as expected, lower in the brighter outburst of 1998/99, explained qualitatively by more efficient coronal cooling due to irradiating disk photons. The disk inner radius is consistent with being within a few times the innermost stable circular orbit (ISCO) throughout the bright-hard-to-soft states (10s of $r_{rm g}$ in gravitational units). The disk inclination is low during the hard state, disagreeing with the binary inclination value, and very close to $90^{circ}$ in the soft state, recovering to a lower value when adopting a blackbody spectrum as the irradiating continuum.
[abridged] The black hole X-ray binary XTE J1550-564 was monitored extensively at X-ray, optical and infrared wavelengths throughout its outburst in 2000. We show that it is possible to separate the optical/near-infrared (OIR) jet emission from the O
We report the identification of the optical counterpart of the X-ray transient XTE J1550-564 described in two companion papers by Sobczak et al (1999) and Remillard et al (1999). We find that the optical source brightened by approximately 4 magnitude
We report multifrequency radio observations of XTE J1550-564 obtained with the Molonglo Observatory Synthesis Telescope and the Australia Telescope Compact Array at the time of its discovery and subsequent hard and soft X-ray outburst in 1998 Septemb
We present the analysis of X-ray observations of the black hole binary 4U~1630$-$47 using relativistic reflection spectroscopy. We use archival data from the RXTE, Swift, and NuSTAR observatories, taken during different outbursts of the source betwee
We use the Relativistic Precession Model (RPM) (Stella et al. 1999a) and quasi-periodic oscillation (QPO) observations from the Rossi X-ray Timing Explorer to derive constraints on the properties of the black holes that power these sources and to tes