ﻻ يوجد ملخص باللغة العربية
We have obtained the first large sample of accurate temperatures for clusters at z>0.14 from ASCA. We compare the luminosity temperature (L-T) distribution for these clusters with the low redshift sample of David et al (1993) and find that there is no evidence for evolution. We also find that the intrinsic variance in this relation is roughly constant with redshift. Additionally, there is no detectable change in the relationship of optical velocity dispersion to X-ray temperature with redshift. Most cosmological simulations driven primarily by gravity predict substantial changes in the L-T relation due to the recent rapid growth of clusters. Our results are consistent either with models in which the cluster core entropy is dominated by pre-heating, or with low Omega models in which cluster structure does not evolve strongly with time. The intrinsic variance in the L-T relation at a fixed redshift can be due a variety of possibilites e.g. a change in the baryonic fraction from cluster to cluster, variation in the fraction of the total energy in the system arising from shocks or supernova heating or variations in the emission measure distributions in multiphase gas.
(abridged) We describe XMM-Newton Guaranteed Time observations of a sample of eight high redshift (0.45<z<0.62) clusters. The goal of these observations was to measure the luminosity and the temperature of the clusters to a precision of ~10%, leading
A luminosity-temperature relation for clusters of galaxies is derived. The two models used, take into account the angular momentum acquisition by the proto-structures during their expansion and collapse. The first one is a modification of the self-si
We analyzed the luminosity-temperature-mass of gas (L_{X} - T - M_{g}) relation for sample of galaxy clusters that have been observed by the Chandra satellite. We used 21 high-redshift clusters (0.4 < z < 1.4). We assumed a power-law relation betwe
The evolution of the properties of the hot gas that fills the potential well of galaxy clusters is poorly known, since models are unable to give robust predictions and observations lack a sufficient redshift leverage and are affected by selection eff
We present our discovery observations and analysis of RDCS1317+2911, z = 0.805, and RDCS1350+6007, z= 0.804, two clusters of galaxies identified through X-ray emission in the ROSAT Deep Cluster Survey (RDCS). We find a temperature of 3.7 +1.5 -0.9 ke