ﻻ يوجد ملخص باللغة العربية
We analyzed the luminosity-temperature-mass of gas (L_{X} - T - M_{g}) relation for sample of galaxy clusters that have been observed by the Chandra satellite. We used 21 high-redshift clusters (0.4 < z < 1.4). We assumed a power-law relation between the X-ray luminosity of galaxy clusters and its temperature and redshift L_{X} ~ (1+z)^{A_{L_{X}T}}T^{beta_{L_{X}T}}. We obtained that for an Omega_{m} = 0.27 and Lambda = 0.73 universe, A_{L_{X}T} = 1.50 +/- 0.23, beta_{L_{X}T} = 2.55 +/- 0.07 (for 68% confidence level). Then, we found the evolution of M_{g} - T relation is small. We assumed a power-law relation in the form M_{g} ~ (1+z)^{A_{M_{g}T}}T^{beta_{M_{g}T}} also, and we obtained A_{M_{g}T} = -0.58 +/- 0.13 and beta_{M_{g}T} = 1.77 +/- 0.16. We also obtained the evolution in M_{g} - L_{X} relation, we can conclude that such relation has strong evolution for our cosmological parameters. We used M_{g} ~ (1+z)^{A_{M_{g}L_{X}}}L^{beta_{M_{g}L_{X}}} equation for assuming this relation and we found A_{M_{g}L_{X}} ~ -1.86 +/- 0.34 and beta_{M_{g}L_{X}} = 0.73 +/- 0.15 for Omega_{m} = 0.27 and Lambda = 0.73 universe. In overal, the clusters on big redshifts have much stronger evolution between correlations of luminosity, temperature and mass, then such correlations for clusters at small redshifts. We can conclude that such strong evolution in L_{X} - T - M_{g} correlations indicate that in the past the clusters have bigger temperature and higher luminosity.
We have obtained the first large sample of accurate temperatures for clusters at z>0.14 from ASCA. We compare the luminosity temperature (L-T) distribution for these clusters with the low redshift sample of David et al (1993) and find that there is n
We present Keck/LRIS spectra of over 200 galaxies with well-determined redshifts between 0.4 and 1.4. We combine new measurements of near-ultraviolet, low-ionization absorption lines with previously measured masses, luminosities, colors, and star for
We have studied the evolution of high redshift quiescent galaxies over an effective area of ~1.7 deg^2 in the COSMOS field. Galaxies have been divided according to their star-formation activity and the evolution of the different populations has been
By cross-correlating large samples of galaxy clusters with publicly available radio source catalogs, we construct the volume-averaged radio luminosity function (RLF) in clusters of galaxies, and investigate its dependence on cluster redshift and mass
Galaxy clusters are the most recent products of hierarchical accretion over cosmological scales. The gas accreted from the cosmic field is thermalized inside the cluster halo. Gas entropy and pressure are expected to have a self-similar behaviour wit