ﻻ يوجد ملخص باللغة العربية
The four equations of stellar structure are reformulated as two alternate pairs of variational principles. Different thermodynamic representations lead to the same hydromechanical equations, but the thermal equations require, not the entropy, but the temperature as the thermal field variable. Our treatment emphasizes the hydrostatic energy and the entropy production rate of luminosity produced and transported. The conceptual and calculational advantages of integral over differential formulations of stellar structure are discussed along with the difficulties in describing stellar chemical evolution by variational principles.
Conformal geodesics are solutions to a system of third order of equations, which makes a Lagrangian formulation problematic. We show how enlarging the class of allowed variations leads to a variational formulation for this system with a third--order
We revisit the basic variational formulation of the minimization problem associated with the micromagnetic energy, with an emphasis on the treatment of the stray field contribution to the energy, which is intrinsically non-local. Under minimal assump
This paper presents studies on a deterministic annealing algorithm based on quantum annealing for variational Bayes (QAVB) inference, which can be seen as an extension of the simulated annealing for variational Bayes (SAVB) inference. QAVB is as easy
Classical electrodynamics uses a dielectric constant to describe the polarization response of electromechanical systems to changes in an electric field. We generalize that description to include a wide variety of responses to changes in the electric
A variational ansatz for momentum eigenstates of translation invariant quantum spin chains is formulated. The matrix product state ansatz works directly in the thermodynamic limit and allows for an efficient implementation (cubic scaling in the bond