ﻻ يوجد ملخص باللغة العربية
We revisit the basic variational formulation of the minimization problem associated with the micromagnetic energy, with an emphasis on the treatment of the stray field contribution to the energy, which is intrinsically non-local. Under minimal assumptions, we establish three distinct variational principles for the stray field energy: a minimax principle involving magnetic scalar potential and two minimization principles involving magnetic vector potential. We then apply our formulations to the dimension reduction problem for thin ferromagnetic shells of arbitrary shapes.
In this paper, we introduce a new framework for parametrization schemes (PS) in GFD. Using the theory of controlled rough paths, we derive a class of rough geophysical fluid dynamics (RGFD) models as critical points of rough action functionals. These
The determination of the speed of travelling fronts of the scalar reaction diffusion equation has been the subject of much study. Using different approaches seemingly disconnected variational principles have been established. The purpose of this work
In this paper, we study the thin-film limit of the micromagnetic energy functional in the presence of bulk Dzyaloshinskii-Moriya interaction (DMI). Our analysis includes both a stationary $Gamma$-convergence result for the micromagnetic energy, as we
We study a geometric variational problem for sets in the plane in which the perimeter and a regularized dipolar interaction compete under a mass constraint. In contrast to previously studied nonlocal isoperimetric problems, here the nonlocal term asy
We present a characterization of the domain wall solutions arising as minimizers of an energy functional obtained in a suitable asymptotic regime of micromagnetics for infinitely long thin film ferromagnetic strips in which the magnetization is force