ﻻ يوجد ملخص باللغة العربية
We present a set of structural parameters for the central parts of 57 early-type galaxies observed with the Planetary Camera of the Hubble Space Telescope. These parameters are based on a new empirical law that successfully characterizes the centers of early type galaxies. This empirical law assumes that the surface brightness profile is a combination of two power laws with different slopes gamma and beta for the inner and outer regions. Conventional structural parameters such as core radius and central surface brightness are replaced by break radius r_b, where the transition between power-law slopes takes place, and surface brightness mu_b at that radius. An additional parameter alpha describes the sharpness of the break. The structural parameters are derived using a chi-squared minimization process applied to the mean surface brightness profiles. The resulting model profiles generally give very good agreement to the observed profiles out to the radius of 10 arcseconds imaged by the Planetary Camera. Exceptions include galaxies which depart from pure power-laws at large radius, those with strong nuclear components, and galaxies partly obscured by dust. The uncertainties in the derived parameters are estimated using Monte-Carlo simulations which test the stability of solutions in the face of photon noise and the effects of the deconvolution process. The covariance of the structural parameters is examined by computing contours of constant chi squared in multi-dimensional parameter space.
We analyze HST+WFPC2 images of 77 early-type galaxies. Brightness profiles are classed into core or power-law forms. Cores are typically rounder than power-law galaxies. Nearly all power-laws with central ellipticity >=0.3 have stellar disks, implyin
We combine the results from several HST investigations of the central structure of early-type galaxies to generate a large sample of parameterized surface photometry. The studies included were those that used the Nuker law to characterize the inner l
We present constraints on the formation and evolution of early-type galaxies (ETGs) with the empirical model EMERGE. The parameters of this model are adjusted so that it reproduces the evolution of stellar mass functions, specific star formation rate
We analyze single-stellar-population (SSP) equivalent parameters for 50 local elliptical galaxies as a function of their structural parameters. These galaxies fill a two-dimensional plane in the four-dimensional space of [Z/H], log t, log $sigma$, an
Recent studies find that some early-type galaxies host Type II or Ibc supernovae (SNe II, Ibc). This may imply recent star-formation activities in these SNe host galaxies, but a massive star origin of the SNe Ib so far observed in early-type galaxies