ترغب بنشر مسار تعليمي؟ اضغط هنا

Empirical constraints on the formation of early-type galaxies

91   0   0.0 ( 0 )
 نشر من قبل Benjamin Moster P
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present constraints on the formation and evolution of early-type galaxies (ETGs) with the empirical model EMERGE. The parameters of this model are adjusted so that it reproduces the evolution of stellar mass functions, specific star formation rates, and cosmic star formation rates since $zapprox10$ as well as quenched galaxy fractions and correlation functions. We find that at fixed halo mass present-day ETGs are more massive than late-type galaxies, whereas at fixed stellar mass ETGs populate more massive halos in agreement with lensing results. This effect naturally results from the shape and scatter of the stellar-to-halo mass relation and the galaxy formation histories. The ETG stellar mass assembly is dominated by in-situ star formation below a stellar mass of $3times10^{11}mathrm{M}_odot$ and by merging and accretion of ex-situ formed stars at higher mass. The mass dependence is in tension with current cosmological simulations. Lower mass ETGs show extended star formation towards low redshift in agreement with recent estimates from IFU surveys. All ETGs have main progenitors on the main sequence of star formation with the red sequence appearing at $z approx 2$. Above this redshift, over 95 per cent of the ETG progenitors are star-forming. More than 90 per cent of $z approx 2$ main sequence galaxies with $m_* > 10^{10}mathrm{M}_odot$ evolve into present-day ETGs. Above redshift 6, more than 80 per cent of the observed stellar mass functions above $10^{9}mathrm{M}_odot$ can be accounted for by ETG progenitors with $m_* > 10^{10}mathrm{M}_odot$. This implies that current and future high redshift observations mainly probe the birth of present-day ETGs. The source code and documentation of EMERGE are available at github.com/bmoster/emerge.



قيم البحث

اقرأ أيضاً

Dissipationless (gas-free or dry) mergers have been suggested to play a major role in the formation and evolution of early-type galaxies, particularly in growing their mass and size without altering their stellar populations. We perform a new test of the dry merger hypothesis by comparing N-body simulations of realistic systems to empirical constraints provided by recent studies of lens early-type galaxies. We find that major and minor dry mergers: i) preserve the nearly isothermal structure of early-type galaxies within the observed scatter; ii) do not change more than the observed scatter the ratio between total mass M and virial mass R_e*sigma/2G (where R_e is the half-light radius and sigma the projected velocity dispersion); iii) increase strongly galaxy sizes [as M^(0.85+/-0.17)] and weakly velocity dispersions [as M^(0.06+/-0.08)] with mass, thus moving galaxies away from the local observed M-R_e and M-sigma relations; iv) introduce substantial scatter in the M-R_e and M-sigma relations. Our findings imply that, unless there is a high degree of fine tuning of the mix of progenitors and types of interactions, present-day massive early-type galaxies cannot have assembled more than ~50% of their mass, and increased their size by more than a factor ~1.8, via dry merging.
We use nine different galaxy formation scenarios in ten cosmological simulation boxes from the EAGLE suite of {Lambda}CDM hydrodynamical simulations to assess the impact of feedback mechanisms in galaxy formation and compare these to observed strong gravitational lenses. To compare observations with simulations, we create strong lenses with $M_star$ > $10^{11}$ $M_odot$ with the appropriate resolution and noise level, and model them with an elliptical power-law mass model to constrain their total mass density slope. We also obtain the mass-size relation of the simulated lens-galaxy sample. We find significant variation in the total mass density slope at the Einstein radius and in the projected stellar mass-size relation, mainly due to different implementations of stellar and AGN feedback. We find that for lens selected galaxies, models with either too weak or too strong stellar and/or AGN feedback fail to explain the distribution of observed mass-density slopes, with the counter-intuitive trend that increasing the feedback steepens the mass density slope around the Einstein radius ($approx$ 3-10 kpc). Models in which stellar feedback becomes inefficient at high gas densities, or weaker AGN feedback with a higher duty cycle, produce strong lenses with total mass density slopes close to isothermal (i.e. -d log({rho})/d log(r) $approx$ 2.0) and slope distributions statistically agreeing with observed strong lens galaxies in SLACS and BELLS. Agreement is only slightly worse with the more heterogeneous SL2S lens galaxy sample. Observations of strong-lens selected galaxies thus appear to favor models with relatively weak feedback in massive galaxies.
We study the evidence for a diversity of formation processes in early-type galaxies by presenting the first complete volume-limited sample of slow rotators with both integral-field kinematics from the ATLAS3D Project and high spatial resolution photo metry from the Hubble Space Telescope. Analysing the nuclear surface brightness profiles of 12 newly imaged slow rotators, we classify their light profiles as core-less, and place an upper limit to the core size of ~10 pc. Considering the full magnitude and volume-limited ATLAS3D sample, we correlate the presence or lack of cores with stellar kinematics, including the proxy for the stellar angular momentum and the velocity dispersion within one half-light radius, stellar mass, stellar age, $alpha$-element abundance, and age and metallicity gradients. More than half of the slow rotators have core-less light profiles, and they are all less massive than $10^{11}$ Msun. Core-less slow rotators show evidence for counter-rotating flattened structures, have steeper metallicity gradients, and a larger dispersion of gradient values than core slow rotators. Our results suggest that core and core-less slow rotators have different assembly processes, where the former are the relics of massive dissipation-less merging in the presence of central supermassive black holes. Formation processes of core-less slow rotators are consistent with accretion of counter-rotating gas or gas-rich mergers of special orbital configurations, which lower the final net angular momentum of stars, but support star formation. We also highlight core fast rotators as galaxies that share properties of core slow rotators and core-less slow rotators. Formation processes similar to those for core-less slow rotators can be invoked to explain the assembly of core fast rotators, with the distinction that these processes form or preserve cores.[Abridged]
We present a systematic study of the diffuse hot gas around early-type galaxies (ETGs) residing in the Virgo cluster, based on archival {it Chandra} observations. Our representative sample consists of 79 galaxies with low-to-intermediate stellar mass es ($M_* approx 10^{9-11}rm~M_odot$), a mass range that has not been extensively explored with X-ray observations thus far. We detect diffuse X-ray emission in only eight galaxies and find that in five cases a substantial fraction of the detected emission can be unambiguously attributed to truly diffuse hot gas, based on their spatial distribution and spectral properties. For the individually non-detected galaxies, we constrain their average X-ray emission by performing a stacking analysis, finding a specific X-ray luminosity of $L_{rm X}/M_* sim 10^{28}{rm~erg~s^{-1}~M_{odot}^{-1}}$, which is consistent with unresolved stellar populations. The apparent paucity of truly diffuse hot gas in these low- and intermediate-mass ETGs may be the result of efficient ram pressure stripping by the hot intra-cluster medium. However, we also find no significant diffuse hot gas in a comparison sample of 57 field ETGs of similar stellar masses, for which archival {it Chandra} observations with similar sensitivity are available. This points to the alternative possibility that galactic winds evacuate the hot gas from the inner region of low- and intermediate-mass ETGs, regardless of the galactic environment. Nevertheless, we do find strong morphological evidence for on-going ram pressure stripping in two galaxies (NGC 4417 and NGC 4459). A better understanding of the roles of ram pressure stripping and galactic winds in regulating the hot gas content of ETGs, invites sensitive X-ray observations for a large galaxy sample.
157 - Ben Rogers 2010
(Abridged) We present a detailed study of the stellar populations of a volume-limited sample of early-type galaxies from SDSS, across a range of environments -- defined as the mass of the host dark matter halo. The stellar populations are explored th rough the SDSS spectra, via projection onto a set of two spectral vectors determined from Principal Component Analysis. We find the velocity dispersion of the galaxy to be the main driver behind the different star formation histories of early-type galaxies. However, environmental effects are seen to play a role (although minor). Galaxies populating the lowest mass halos have stellar populations on average ~1Gyr younger than the rest of the sample. The fraction of galaxies with small amounts of recent star formation is also seen to be truncated when occupying halos more massive than 3E13Msun. The sample is split into satellite and central galaxies for a further analysis of environment. Satellites are younger than central galaxies of the same stellar mass. The younger satellite galaxies in 6E12Msun halos have stellar populations consistent with the central galaxies found in the lowest mass halos of our sample (i.e. 1E12Msun). This result is indicative of galaxies in lower mass halos being accreted into larger halos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا