ترغب بنشر مسار تعليمي؟ اضغط هنا

First Measurements of the Electron Density Enhancements Expected in C-shocks

46   0   0.0 ( 0 )
 نشر من قبل Izaskun Jimenez-Serra
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف I. Jimenez-Serra




اسأل ChatGPT حول البحث

Magnetic precursors of C-shocks accelerate, compress and heat molecular ions, modifying the kinematics and the physical conditions of the ion fluid with respect to the neutral one. Electron densities are also expected to be significantly enhanced in shock precursors. In this Letter, we present observations of strongly polar ion and neutral molecules such as SiO, H13CO+, HN13C and H13CN, which reveal the electron density enhancements associated with the precursor of the young L1448-mm outflow. While in the ambient gas the excitation of the ions and neutrals is explained by collisional excitation by H2 with a single density of 10E5cmE-3, H13CO+ shows an over excitation in the shock precursor component that requires H2 densities of a factor of >10 larger than those derived from the neutral species. This over excitation in H13CO+ can be explained if we consider an additional excitation by collisions with electrons and an electron density enhancement in the precursor stage by a factor of 500, i.e. a fractional ionization of 5x10E-5. These results show that multiline observations can be used to study the evolution of the ion and electron fluids at the first stages of the C-shock interaction.



قيم البحث

اقرأ أيضاً

We have used the Arecibo telescope to measure the HI absorption spectra of eight pulsars. We show how kinematic distance measurements depend upon the values of the galactic constants R_o and Theta_o, and we select our preferred current values from th e literature. We then derive kinematic distances for the low-latitude pulsars in our sample and electron densities along their lines of sight. We combine these measurements with all others in the inner galactic plane visible from Arecibo to study the electron density in this region. The electron density in the interarm range 48 degrees < l < 70 degrees is [0.017 (-0.007,+0.012) (68% c.l.)] cm^(-3). This is 0.75 (-0.22,+0.49) (68% c.l.) of the value calculated by the Cordes & Lazio (2002) galactic electron density model. The model agrees more closely with electron density measurements toward Arecibo pulsars lying closer to the galactic center, at 30 degrees<l<48 degrees. Our analysis leads to the best current estimate of the distance of the relativistic binary pulsar B1913+16: d=(9.0 +/- 3) kpc. We use the high-latitude pulsars to search for small-scale structure in the interstellar hydrogen observed in absorption over multiple epochs. PSR B0301+19 exhibited significant changes in its absorption spectrum over 22 yr, indicating HI structure on a ~500 AU scale.
We use a smoothed particle hydrodynamics (SPH) code to examine the effects of a binary companion on a Be star disk for a range of disk viscosities and misalignment angles, i.e. the angle between the orbital plane and the primarys spin axis. The densi ty structures in the disk due to the tidal interaction with the binary companion are investigated. Expanding on our previous work, the shape and density structure of density enhancements due to the binary companion are analyzed and the changes in observed interferometric features due to these orbiting enhancements are also predicted. We find that larger misalignment angles and viscosity values result in more tightly wound spiral arms with densities that fall-off more slowly with radial distance from the central star. We show that the orbital phase has very little effect on the structure of the spiral density enhancements. We demonstrate that these spiral features can be detected with an interferometer in H$alpha$ and K-band emission. We also show that the spiral features affect the axis ratios determined by interferometry depending on the orientation of these features and the observer. For example, our simulations show that the axis ratios can vary by 20% for our co-planar binary disk system depending on the location of the disk density enhancements.
We show, through a simple patchy reconnection model, that retracting reconnected flux tubes may present elongated regions relatively devoid of plasma, as well as long lasting, dense central hot regions. Reconnection is assumed to happen in a small pa tch across a Syrovatskii (non-uniform) current sheet (CS) with skewed magnetic fields. The background magnetic pressure has its maximum at the center of the CS plane, and decreases toward the edges of the plane. The reconnection patch creates two V-shaped reconnected tubes that shorten as they retract in opposite directions, due to magnetic tension. One of them moves upward toward the top edge of the CS, and the other one moves downward toward the top of the underlying arcade. Rotational discontinuities (RDs) propagate along the legs of the tubes and generate parallel super-sonic flows that collide at the center of the tube. There, gas dynamics shocks that compress and heat the plasma are launched outwardly. The descending tube moves through the bottom part of the CS where it expands laterally in response to the background magnetic pressure. This effect may decrease plasma density by 30 % to 50 % of background levels. This tube will arrive at the top of the arcade that will slow it down to a stop. Here, the perpendicular dynamics is halted, but the parallel dynamics continues along its legs; the RDs are shut down, and the gas is rarified to even lower densities. The hot postshock regions continue evolving, determining a long lasting hot region on top of the arcade. We provide an observational method based on total emission measure and mean temperature, that indicates where in the CS the tube has been reconnected.
108 - T. Yong , A.I. Abdalla , 2021
We report on time-resolved measurements of electron number density by continuous-wave laser absorption in a low-energy nanosecond-scale laser-produced spark in atmospheric pressure air. Laser absorption is a result of free-free and bound-free electro n excitation, with the absorption coefficient modeled and evaluated using estimates of the time-variation in electron temperature and probe laser absorption path length. Plasma electron number densities are determined to be as high as $n_text{e}=7times10^{19}$ cm$^{-3}$, and decay to $1/e$ of their peak values over a period of about 50 ns following plasma formation using a 20 mJ, 10 ns pulse width frequency-doubled Nd:YAG laser. The measured plasma densities at later times are shown to be in reasonable agreement with Stark broadening measurements of the 3s[$^5S{^o}$]-3p[$^5P$] electronic transition in atomic oxygen at 777 nm. This study provides support for the use of such continuous wave laser absorption for time resolved electron density measurements in low energy spark discharges in air, provided that an estimate of the electron temperature and laser path length can be made by accompanying diagnostics.
We determine the density-dependent electron mass, m*, in two-dimensional (2D) electron systems of GaAs/AlGaAs heterostructures by performing detailed low-temperature Shubnikov deHaas measurements. Using very high quality transistors with tunable elec tron densities we measure m* in single, high mobility specimens over a wide range of r_s (6 to 0.8). Toward low-densities we observe a rapid increase of m* by as much as 40%. For 2>r_s>0.8 the mass values fall ~10% below the band mass of GaAs. Numerical calculations are in qualitative agreement with our data but differ considerably in detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا