ﻻ يوجد ملخص باللغة العربية
We show, through a simple patchy reconnection model, that retracting reconnected flux tubes may present elongated regions relatively devoid of plasma, as well as long lasting, dense central hot regions. Reconnection is assumed to happen in a small patch across a Syrovatskii (non-uniform) current sheet (CS) with skewed magnetic fields. The background magnetic pressure has its maximum at the center of the CS plane, and decreases toward the edges of the plane. The reconnection patch creates two V-shaped reconnected tubes that shorten as they retract in opposite directions, due to magnetic tension. One of them moves upward toward the top edge of the CS, and the other one moves downward toward the top of the underlying arcade. Rotational discontinuities (RDs) propagate along the legs of the tubes and generate parallel super-sonic flows that collide at the center of the tube. There, gas dynamics shocks that compress and heat the plasma are launched outwardly. The descending tube moves through the bottom part of the CS where it expands laterally in response to the background magnetic pressure. This effect may decrease plasma density by 30 % to 50 % of background levels. This tube will arrive at the top of the arcade that will slow it down to a stop. Here, the perpendicular dynamics is halted, but the parallel dynamics continues along its legs; the RDs are shut down, and the gas is rarified to even lower densities. The hot postshock regions continue evolving, determining a long lasting hot region on top of the arcade. We provide an observational method based on total emission measure and mean temperature, that indicates where in the CS the tube has been reconnected.
We use a smoothed particle hydrodynamics (SPH) code to examine the effects of a binary companion on a Be star disk for a range of disk viscosities and misalignment angles, i.e. the angle between the orbital plane and the primarys spin axis. The densi
We study the evolution of the magnetic field in a Y-type current sheet subject to a brief, localized magnetic reconnection event. The reconnection produces up- and down-flowing reconnected flux tubes which rapidly decelerate when they hit the Y-lines
We show, theoretically and via MHD simulations, how a short burst of reconnection localized in three dimensions on a one-dimensional current sheet creates a pair of reconnected flux tubes. We focus on the post-reconnection evolution of these flux tub
We study the evolution of the cross-correlation between voids and the mass density field - i.e. of void profiles. We show that approaches based on the spherical model alone miss an important contribution to the evolution on large scales of most inter
We present a simple empirical function for the average density profile of cosmic voids, identified via the watershed technique in $Lambda$CDM N-body simulations. This function is universal across void size and redshift, accurately describing a large