ﻻ يوجد ملخص باللغة العربية
Using UV spectra obtained with FUSE, HST, and/or IUE, we determine interstellar column densities of 12CO, 13CO, and/or C_2 for ten Galactic sight lines with 0.37<E(B-V)<0.72. The N(CO)/N(H_2) ratio varies over a factor of 100 in this sample, due primarily to differences in N(CO). For a given N(H_2), published models of diffuse and translucent clouds predict less CO than is observed. The J=1-3 rotational levels of 12CO are sub-thermally populated in these sight lines, with T_ex typically between 3 and 7 K. In general, there is no significant difference between the excitation temperatures of 12CO and 13CO. Fits to the higher resolution CO line profiles suggest that CO (like CN) is concentrated in relatively cold, dense gas. We obtain C_2 column densities from the F-X (1-0) and (0-0) bands (1314 and 1341 A), the D-X (0-0) band (2313 A), and the A-X (3-0) and (2-0) bands (7719 and 8757 A). Comparisons among those N(C_2) yield a set of mutually consistent f-values for the UV and optical C_2 bands, but also reveal some apparent anomalies within the F-X (0-0) band. Both the kinetic temperature inferred from the C_2 rotational populations (up to J=18) and the excitation temperature T_02(C_2) are generally smaller than the corresponding T_01(H_2). Incorporating additional data for K I, HD, CH, C_2, C_3, CN, and CO from the literature (for a total sample of 74 sight lines), we find that (1) CO is most tightly correlated with CN; (2) the ratios 12CO/H_2 and 13CO/H_2 both are fairly tightly correlated with the density indicator CN/CH (but C_2/H_2 is not); and (3) the ratio 12CO/13CO is somewhat anti-correlated with both CN/CH and N(CO). Sight lines with 12CO/13CO below the average local Galactic value of 12C/13C appear to sample colder, denser gas in which isotope exchange reactions have enhanced 13CO, relative to 12CO.
The dust properties inferred from the analysis of Planck observations in total and polarized emission challenge current dust models. We propose new dust models compatible with polarized and unpolarized data in extinction and emission for translucent
We report total abundances and related parameters for the full sample of the FUSE survey of molecular hydrogen in 38 translucent lines of sight. New results are presented for the second half of the survey involving 15 lines of sight to supplement dat
Aims. We seek to understand how the 4.8 GHz formaldehyde absorption line is distributed in the MON R2, S156, DR17/L906, and M17/M18 regions. More specifically, we look for the relationship among the H2CO, 12CO, and 13CO spectral lines. Methods. The f
We present fully sampled ~3 resolution images of the 12CO(J=2-1), 13CO(J=2-1), and C18O(J=2-1) emission taken with the newly developed 1.85-m mm-submm telescope toward the entire area of the Orion A and B giant molecular clouds. The data were compare
After 30 Doradus, N11 is the second largest and brightest nebula in the LMC. This large nebula has several OB associations with bright nebulae at its surroundings. N11 was previously mapped at the lowest rotational transitions of $^{12}$CO (J=1--0 an