ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust models compatible with Planck intensity and polarization data in translucent lines of sight

62   0   0.0 ( 0 )
 نشر من قبل Vincent Guillet
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dust properties inferred from the analysis of Planck observations in total and polarized emission challenge current dust models. We propose new dust models compatible with polarized and unpolarized data in extinction and emission for translucent lines of sight ($0.5 < A_V < 2.5$). We amended the DustEM tool to model polarized extinction and emission. We fit the spectral dependence of the mean extinction, polarized extinction, SED and polarized SED with PAHs, astrosilicates and amorphous carbon (a-C). The astrosilicate population is aligned along the magnetic field lines, while the a-C population may be aligned or not. With their current optical properties, oblate astrosilicate grains are not emissive enough to reproduce the emission to extinction polarization ratio $P_{353}/p_V$ derived with Planck data. Models using prolate astrosilicate grains with an elongation $a/b=3$ and an inclusion of 20% of porosity succeed. The spectral dependence of the polarized SED is steeper in our models than in the data. Models perform slightly better when a-C grains are aligned. A small (6%) volume inclusion of a-C in the astrosilicate matrix removes the need for porosity and perfect grain alignment, and improves the fit to the polarized SED. Dust models based on astrosilicates can be reconciled with Planck data by adapting the shape of grains and adding inclusions of porosity or a-C in the astrosilicate matrix.



قيم البحث

اقرأ أيضاً

Planck has mapped the intensity and polarization of the sky at microwave frequencies with unprecedented sensitivity. We make use of the Planck 353 GHz I, Q, and U Stokes maps as dust templates, and cross-correlate them with the Planck and WMAP data a t 12 frequencies from 23 to 353 GHz, over circular patches with 10 degree radius. The cross-correlation analysis is performed for both intensity and polarization data in a consistent manner. We use a mask that focuses our analysis on the diffuse interstellar medium at intermediate Galactic latitudes. We determine the spectral indices of dust emission in intensity and polarization between 100 and 353 GHz, for each sky-patch. The mean values, $1.59pm0.02$ for polarization and $1.51pm0.01$ for intensity, for a mean dust temperature of 19.6 K, are close, but significantly different ($3.6,sigma$). We determine the mean spectral energy distribution (SED) of the microwave emission, correlated with the 353 GHz dust templates, by averaging the results of the correlation over all sky-patches. We find that the mean SED increases for decreasing frequencies at $ u < 60$ GHz, for both intensity and polarization. The rise of the polarization SED towards low frequencies may be accounted for by a synchrotron component correlated with dust, with no need for any polarization of the anomalous microwave emission. We use a spectral model to separate the synchrotron and dust polarization and to characterize the spectral dependence of the dust polarization fraction. The polarization fraction ($p$) of the dust emission decreases by $(21pm6)$ % from 353 to 70 GHz. The decrease of $p$ could indicate differences in polarization efficiency among components of interstellar dust (e.g., carbon versus silicate grains). Our observational results provide inputs to quantify and optimize the separation between Galactic and cosmological polarization.
Using UV spectra obtained with FUSE, HST, and/or IUE, we determine interstellar column densities of 12CO, 13CO, and/or C_2 for ten Galactic sight lines with 0.37<E(B-V)<0.72. The N(CO)/N(H_2) ratio varies over a factor of 100 in this sample, due prim arily to differences in N(CO). For a given N(H_2), published models of diffuse and translucent clouds predict less CO than is observed. The J=1-3 rotational levels of 12CO are sub-thermally populated in these sight lines, with T_ex typically between 3 and 7 K. In general, there is no significant difference between the excitation temperatures of 12CO and 13CO. Fits to the higher resolution CO line profiles suggest that CO (like CN) is concentrated in relatively cold, dense gas. We obtain C_2 column densities from the F-X (1-0) and (0-0) bands (1314 and 1341 A), the D-X (0-0) band (2313 A), and the A-X (3-0) and (2-0) bands (7719 and 8757 A). Comparisons among those N(C_2) yield a set of mutually consistent f-values for the UV and optical C_2 bands, but also reveal some apparent anomalies within the F-X (0-0) band. Both the kinetic temperature inferred from the C_2 rotational populations (up to J=18) and the excitation temperature T_02(C_2) are generally smaller than the corresponding T_01(H_2). Incorporating additional data for K I, HD, CH, C_2, C_3, CN, and CO from the literature (for a total sample of 74 sight lines), we find that (1) CO is most tightly correlated with CN; (2) the ratios 12CO/H_2 and 13CO/H_2 both are fairly tightly correlated with the density indicator CN/CH (but C_2/H_2 is not); and (3) the ratio 12CO/13CO is somewhat anti-correlated with both CN/CH and N(CO). Sight lines with 12CO/13CO below the average local Galactic value of 12C/13C appear to sample colder, denser gas in which isotope exchange reactions have enhanced 13CO, relative to 12CO.
We report total abundances and related parameters for the full sample of the FUSE survey of molecular hydrogen in 38 translucent lines of sight. New results are presented for the second half of the survey involving 15 lines of sight to supplement dat a for the first 23 lines of sight already published. We assess the correlations between molecular hydrogen and various extinction parameters in the full sample, which covers a broader range of conditions than the initial sample. In particular, we are now able to confirm that many, but not all, lines of sight with shallow far-UV extinction curves and large values of the total-to-selective extinction ratio, $R_V$ = $A_V$ / $E(B-V)$ -- characteristic of larger than average dust grains -- are associated with particularly low hydrogen molecular fractions ($f_{rm H2}$). In the lines of sight with large $R_V$, there is in fact a wide range in molecular fractions, despite the expectation that the larger grains should lead to less H$_2$ formation. However, we see specific evidence that the molecular fractions in this sub-sample are inversely related to the estimated strength of the UV radiation field and thus the latter factor is more important in this regime. We have provided an update to previous values of the gas-to-dust ratio, $N$(H$_{rm tot}$)/$E(B-V)$, based on direct measurements of $N$(H$_2$) and $N$(H I). Although our value is nearly identical to that found with Copernicus data, it extends the relationship by a factor of 2 in reddening. Finally, as the new lines of sight generally show low to moderate molecular fractions, we still find little evidence for single monolithic translucent clouds with $f_{rm H2}$ $sim$ 1.
If a single line of sight (LOS) intercepts multiple dust clouds of different spectral energy distributions and magnetic field orientations, the frequency scaling of each of the Stokes $Q$ and $U$ parameters of thermal dust emission may be different ( LOS frequency decorrelation). We present first evidence for LOS frequency decorrelation in $Planck$ data. We use independent, neutral-hydrogen--measurements of the number of clouds per LOS and the magnetic field orientation in each cloud to select two sets of sightlines: (i) a target sample (pixels likely to exhibit LOS frequency decorrelation); (ii) a control sample (pixels lacking complex LOS structure). We test the null hypothesis that LOS frequency decorrelation is not detectable in $Planck$ 353 and 217~GHz polarization data at high Galactic latitudes. The data reject this hypothesis at high significance. The detection is robust against choice of CMB map and map-making pipeline. The observed change in polarization angle due to LOS frequency decorrelation is detectable above the $Planck$ noise level. The probability that the detected effect is due to noise alone ranges from $5times 10^{-2}$ to $4times 10^{-7}$, depending on the CMB subtraction algorithm and treatment of residual systematics; correcting for residual systematics increases the significance of the effect. The LOS decorrelation effect is stronger for sightlines with more misaligned magnetic fields, as expected. We estimate that an intrinsic variation of $sim15%$ in the ratio of 353 to 217~GHz polarized emission between clouds is sufficient to reproduce the measured effect. Our finding underlines the importance of ongoing studies to map the 3D structure of the magnetized dusty ISM that could help component separation methods to account for frequency decorrelation effects in CMB polarization studies.
The 1-50 GHz GBT PRIMOS data contains ~50 molecular absorption lines observed in diffuse and translucent clouds located in the Galactic Center, Bar, and spiral arms in the line-of-sight to Sgr B2(N). We measure the column densities and estimate abund ances, relative to H2, of 11 molecules and additional isotopologues. We use absorption by optically thin transitions of c-C3H2 to estimate the N(H2), and argue that this method is preferable to more commonly used methods. We discuss the kinematic structure and abundance patterns of small molecules including the sulfur-bearing species CS, SO, CCS, H2CS, and HCS+; oxygen-bearing molecules OH, SiO, and H2CO; and simple hydrocarbon molecules c-C3H2, l-C3H, and l-C3H+. We discuss the implications of the observed chemistry for the structure of the gas and dust in the ISM. Highlighted results include the following. First, whereas gas in the disk has a molecular hydrogen fraction of 0.65, clouds on the outer edge of the Galactic Bar and in or near the Galactic Center have molecular fractions of 0.85 and >0.9, respectively. Second, we observe trends in isotope ratios with Galactocentric distance; while carbon and silicon show enhancement of the rare isotopes at low Galactocentric distances, sulfur exhibits no trend with Galactocentric distance; the ratio of c-C3H2/c-H13CCCH provides a good estimate of the 12C:13C ratio, whereas H2CO/H2^13CO exhibits fractionation. Third, we report the presence of l-C3H+ in diffuse clouds for the first time. Finally, we suggest that CS has an enhanced abundance within higher density clumps of material in the disk, and therefore may be diagnostic of cloud conditions. If this holds, the diffuse clouds in the Galactic disk contain multiple embedded hyperdensities in a clumpy structure, and the density profile is not a simple function of A_V.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا