ﻻ يوجد ملخص باللغة العربية
Supernovae connected with long-duration gamma-ray bursts (GRBs) are hyper-energetic explosion resulting from the collapse of very massive stars (about 40Mo, where Mo is the mass of the Sun) stripped of their outher hydrogen and helium envelopes. A very massive progenitor, collapsing to a black hole, was thought to be a requirement for the launch of a GRB. Here we report the results of modelling the spectra and light curve of SN 2006aj, which demonstrate that the supernova had a much smaller explosion energy and ejected much less mass than the other GRB-sueprnovae, suggesting that it was produced by a star whose initial mass was only about 20Mo. A star of this mass is expected to form a neutron star rather than a black hole when its core collapses. The smaller explosion energy of SN 2006aj is matched by the weakness and softness of GRB 060218 (an X-ray flash), and the weakness of the radio flux of the supernova. Our results indicate that the supernova-GRB connection extends to a much broader range of stellar masses than previously thought, possibly involving different physical mechanisms: a `collapsar for the more massive stars collapsing to a black hole, and magnetic activity of the nascent neutron star for the less massive stars.
We have studied the afterglow of the gamma-ray burst (GRB) of February 18, 2006. This is a nearby long GRB, with a very low peak energy, and is therefore classified as an X-ray Flash (XRF). XRF 060218 is clearly associated with a supernova -- dubbed
Optical spectroscopy and photometry of SN 2006aj have been performed with the Subaru telescope at t > 200 days after GRB060218, the X-ray Flash with which it was associated. Strong nebular emission-lines with an expansion velocity of v ~ 7,300 km/s w
The X-Ray Flash (XRF), 031203 with a host galaxy at z=0.1055, is, apart from GRB980425, the closest Gamma-Ray Burst (GRB) or XRF known to date. We monitored its host galaxy from 1-100 days after the burst. In spite of the high extinction to the sourc
We present ground-based and Hubble Space Telescope optical observations of the X-ray flash (XRF) 020903, covering 300 days. The afterglow showed a very rapid rise in the first day, followed by a relatively slow decay in the next few days. There was a
Long-duration gamma-ray bursts (GRBs) are associated with type Ic supernovae that are more luminous than average and that eject material at very high velocities. Less-luminous supernovae were not hitherto known to be associated with GRBs, and therefo