ﻻ يوجد ملخص باللغة العربية
We present ground-based and Hubble Space Telescope optical observations of the X-ray flash (XRF) 020903, covering 300 days. The afterglow showed a very rapid rise in the first day, followed by a relatively slow decay in the next few days. There was a clear bump in the light curve after ~25 days, accompanied by a drastic change in the spectral energy distribution. The light curve and the spectral energy distribution are naturally interpreted as the emergence -- and subsequent decay -- of a supernova (SN), similar to SN 1998bw. At peak luminosity, the SN is estimated to be 0.8 +/- 0.1 mag fainter than SN1998bw. This argues in favor of the existence of a supernova associated with this X-ray flash. A spectrum obtained 35 days after the burst shows emission lines from the host galaxy. We use this spectrum to put an upper limit on the oxygen abundance of the host at [O/H] < -0.6 dex. We also discuss a possible trend between the softness of several bursts and the early behavior of the optical afterglow, in the sense that XRFs and X-ray rich GRBs seem to have a plateau phase or even a rising light curve. This can be naturally explained in models where XRFs are similar to GRBs but seen off the jet axis.
The X-Ray Flash (XRF), 031203 with a host galaxy at z=0.1055, is, apart from GRB980425, the closest Gamma-Ray Burst (GRB) or XRF known to date. We monitored its host galaxy from 1-100 days after the burst. In spite of the high extinction to the sourc
We have studied the afterglow of the gamma-ray burst (GRB) of February 18, 2006. This is a nearby long GRB, with a very low peak energy, and is therefore classified as an X-ray Flash (XRF). XRF 060218 is clearly associated with a supernova -- dubbed
Long-duration gamma-ray bursts (GRBs) are associated with type Ic supernovae that are more luminous than average and that eject material at very high velocities. Less-luminous supernovae were not hitherto known to be associated with GRBs, and therefo
Supernovae connected with long-duration gamma-ray bursts (GRBs) are hyper-energetic explosion resulting from the collapse of very massive stars (about 40Mo, where Mo is the mass of the Sun) stripped of their outher hydrogen and helium envelopes. A ve
We report HETE-2 WXM/FREGATE observations of the X-ray flash, XRF 020903. This event was extremely soft: the ratio log(S_X/S_gamma) = 0.7, where S_X and S_gamma are the fluences in the 2-30 and 30-400 keV energy bands, is the most extreme value obser