ترغب بنشر مسار تعليمي؟ اضغط هنا

Clusters at Half Hubble Time: Galaxy Structure and Colors in RXJ0152.7-1357 and MS1054-03

70   0   0.0 ( 0 )
 نشر من قبل John Blakeslee
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the photometric and structural properties of spectroscopically confirmed members in the two massive X-ray--selected z=0.83 galaxy clusters MS1054-03 and RXJ0152-1357 using three-band mosaic imaging with the Hubble Space Telescope Advanced Camera for Surveys. The samples include 105 and 140 members of MS1054-03 and RXJ0152-1357, respectively, with ACS F775W magnitude < 24.0. We develop a promising new structural classification method, based on a combination of the best-fit Sersic indices and the normalized root-mean-square residuals from the fits; the resulting classes agree well with the visual ones, but are less affected by galaxy orientation. We examine the color--magnitude relations in detail and find that the color residuals correlate with the local mass density measured from our weak lensing maps; we identify a threshold density of $Sigma approx 0.1$, in units of the critical density, above which the star formation appears to cease. For RXJ0152-1357, we also find a trend in the color residuals with velocity, resulting from an offset of about 980 km/s in the mean redshifts of the early- and late-type galaxies. Analysis of the color--color diagrams indicates that a range of star formation time-scales are needed to reproduce the loci of the galaxy colors. We also identify some cluster galaxies whose colors can only be explained by large amounts, $A_V approx 1$ mag, of internal dust extinction. [Abstract shortened]



قيم البحث

اقرأ أيضاً

Using HST images, we separate the bulge-like (pbulge) and disk-like (pdisk) components of 71 galaxies in the rich cluster MS1054-03 and of 21 in the field. Our key finding is that luminous pbulges are very red with restframe U-B ~ 0.45, while predict ed colors are bluer by 0.20 mag. Moreover, these very red colors appear to be independent of environment, pbulge luminosity, pdisk color, and pbulge fraction. These results challenge any models of hierarchical galaxy formation that predict the colors of distant (z ~ 0.8) luminous field and cluster bulges would differ. Our findings also disagree with other claims that 30% to 50% of bright bulges and ellipticals at z ~ 1 are very blue (U-B < 0).
81 - Inger Jorgensen 2004
We present a study of the stellar populations of galaxies in the cluster RXJ0152.7-1357 at a redshift of 0.83. The study is based on new high S/N spectroscopy of 29 cluster members covering the wavelength range 5000-10000A as well as riz photometry o f the cluster. The scaling relations between velocity dispersions, luminosities and Balmer line strengths appear to be in agreement with pure passive evolution of the stellar populations with a formation redshift z=4. However, the strengths of the D4000 indices and the metal indices do not support this interpretation. Compared to z=0, the metal indices (C4668, Fe4383, CN3883, G4300 and CN2) show that at least half of the non-emission line galaxies in RXJ0152.7-1357 have [alpha/Fe] of 0.2 dex higher, and about half of the galaxies have significantly lower metal content. The differences in stellar populations of the galaxies are associated with the location of the galaxies relative to the X-ray emission. The galaxies with weak C4668 and G4300, as well as galaxies with weak [OII] emission, are located in areas of low X-ray luminosity. It is possible that these galaxies are experiencing the effect of the cluster merger taking place in RXJ0152.7-1357 as (short) episodes of star formation, while the galaxies in the cores of the X-ray sub-clumps are unaffected by the merger. The spectroscopy of the RXJ0152.7-1357 galaxies shows for the first time galaxies in a rich cluster at intermediate redshift that cannot evolve passively into the present day galaxy population in rich clusters. Additional physical processes may be at work and we speculate that merging with infalling (disk) galaxies in which stars have formed over an extended period might produce the required reduction in [alpha/Fe]. (abridged)
198 - Kim-Vy H. Tran 1999
We present results from a dynamical study of the high redshift, massive, X-ray luminous galaxy cluster MS1054--03. We significantly increase the number of confirmed cluster members by adding 20 to an existing set of twelve; using the confirmed member s, we estimate MS1054--03s redshift, velocity dispersion, and mass. We find that z=0.8329 +/- 0.0017, sigma = 1170 +/- 150 km/s, and the central mass is approximately 1.9 +/- 0.5 x 10^{15} h^{-1} M_{odot} (within R=1 h^{-1} Mpc; H_0 =100h km s^{-1} Mpc^{-1}, q_0=0.5). MS1054--03 is one of a handful of high redshift (z>0.5) clusters known that also has X-ray and weak-lensing observations (Donahue et al. 1998; Luppino & Kaiser 1997); we find our dynamical mass agrees with mass estimates from both studies. The confirmation of MS1054--03 as a massive cluster at z~0.8 is consistent with an open (Omega_M~0.3) or flat, Lambda-dominated (Omega_M+Omega_{Lambda}=1) universe. In addition, we compare MS1054--03s velocity dispersion and X-ray temperature to a sample of low and intermediate redshift galaxy clusters to test for evolution in the sigma - T_x relation; we find no evidence for evolution in this relation to z~0.8.
77 - P.N. Best 2001
An extremely deep 5 GHz radio observation is presented of the rich cluster MS1054-03 at redshift z=0.83. 34 radio sources are detected down to a 32 micro-Jy (6 sigma), compared to about 25 expected from previous blank field radio source count determi nations; the sources giving rise to these excess counts lie within 2 arcmins (700 kpc) of the cluster centre. Existing imaging and spectroscopy has provided optical identifications for 21 of the radio sources and redshifts for 11, of which 8 are confirmed cluster members. 4 of these 8 confirmed cluster sources are associated with close galaxy pairs (10-25 kpc projected offset) of similar magnitude, implying that the radio source may be triggered by an interaction. However, although MS1054-03 has a very high fraction (17%) of on-going mergers (separations <~ 10 kpc), no radio emission is detected towards any of these merger events, setting a mean upper limit of 10 Msun/yr for any star formation associated with these mergers. This supports a hypothesis that low luminosity radio sources may be onset by initial weak interactions rather than direct mergers. The host galaxies of the other four confirmed cluster radio sources are all isolated, and show a range of morphologies from early-type to Sc. A comparison between the emission line and radio luminosities suggests that two of these four radio sources are low-luminosity AGN, whilst for at least one of the other two the radio emission is associated with on-going star formation. All of the radio sources associated with the galaxy pairs appear more likely AGN than starburst origin. The overall proportion of radio sources associated with AGN in this cluster (>75%) is higher than at these flux density levels in the field (40-50%).
The role of the environment on the formation of S0 galaxies is still not well understood, specifically in the outskirts of galaxy clusters. We study eight low-redshift clusters, analyzing galaxy members up to cluster-centric distances $sim2.5,R_{200} $. We perform 2D photometric bulge-disk decomposition in the $g$-, $r$- and $i$-bands from which we identify 469 double-component galaxies. We analyze separately the colors of the bulges and the disks and their dependence on the projected cluster-centric distance and on the local galaxy density. For our sample of cluster S0 galaxies, we find that bulges are redder than their surrounding disks, show a significant color-magnitude trend, and have colors that do not correlate with environment metrics. On the other hand, the disks associated with our cluster S0s become significantly bluer with increasing cluster-centric radius, but show no evidence for a color-magnitude relation. The disk color-radius relation is mainly driven by galaxies in the cluster core at $0leq R/ R_{200}<0.5$. No significant difference is found for the disk colors of backsplash and infalling galaxies in the projected phase space. Beyond $R_{200}$, the disk colors do not change with the local galaxy density, indicating that the colors of double-component galaxies are not affected by pre-processing. A significant color-density relation is observed for single-component disk-dominated galaxies beyond $R_{200}$. We conclude that the formation of cluster S0 galaxies is primarily driven by cluster core processes acting on the disks, while evidence of pre-processing is found for single-component disk-dominated galaxies. We publicly release the data from the bulge-disk decomposition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا