ﻻ يوجد ملخص باللغة العربية
We present results from a dynamical study of the high redshift, massive, X-ray luminous galaxy cluster MS1054--03. We significantly increase the number of confirmed cluster members by adding 20 to an existing set of twelve; using the confirmed members, we estimate MS1054--03s redshift, velocity dispersion, and mass. We find that z=0.8329 +/- 0.0017, sigma = 1170 +/- 150 km/s, and the central mass is approximately 1.9 +/- 0.5 x 10^{15} h^{-1} M_{odot} (within R=1 h^{-1} Mpc; H_0 =100h km s^{-1} Mpc^{-1}, q_0=0.5). MS1054--03 is one of a handful of high redshift (z>0.5) clusters known that also has X-ray and weak-lensing observations (Donahue et al. 1998; Luppino & Kaiser 1997); we find our dynamical mass agrees with mass estimates from both studies. The confirmation of MS1054--03 as a massive cluster at z~0.8 is consistent with an open (Omega_M~0.3) or flat, Lambda-dominated (Omega_M+Omega_{Lambda}=1) universe. In addition, we compare MS1054--03s velocity dispersion and X-ray temperature to a sample of low and intermediate redshift galaxy clusters to test for evolution in the sigma - T_x relation; we find no evidence for evolution in this relation to z~0.8.
An extremely deep 5 GHz radio observation is presented of the rich cluster MS1054-03 at redshift z=0.83. 34 radio sources are detected down to a 32 micro-Jy (6 sigma), compared to about 25 expected from previous blank field radio source count determi
Using HST images, we separate the bulge-like (pbulge) and disk-like (pdisk) components of 71 galaxies in the rich cluster MS1054-03 and of 21 in the field. Our key finding is that luminous pbulges are very red with restframe U-B ~ 0.45, while predict
The largest galaxies in the Universe reside in galaxy clusters. Using sensitive observations of carbon-monoxide, we show that the Spiderweb Galaxy -a massive galaxy in a distant protocluster- is forming from a large reservoir of molecular gas. Most o
We study the photometric and structural properties of spectroscopically confirmed members in the two massive X-ray--selected z=0.83 galaxy clusters MS1054-03 and RXJ0152-1357 using three-band mosaic imaging with the Hubble Space Telescope Advanced Ca
We reanalyzed the ROSAT/HRI observation of MS1054-03, optimizing the channel HRI selection and including a new exposure of 68 ksec. From a wavelet analysis of the HRI image we identify the main cluster component and find evidence for substructure in