ﻻ يوجد ملخص باللغة العربية
Recent calculations of atomic data for Fe XV have been used to generate theoretical line ratios involving n = 3-4 transitions in the soft X-ray spectral region (52-83 A), for a wide range of electron temperatures and densities applicable to solar and stellar coronal plasmas. A comparison of these with solar flare observations from a rocket-borne spectrograph (XSST) reveals generally good agreement between theory and experiment. In particular, the 82.76 A emission line in the XSST spectrum is identified, for the first time to our knowledge in an astrophysical source. Most of the Fe XV transitions which are blended have had the species responsible clearly identified, although there remain a few instances where this has not been possible. The line ratio calculations are also compared with a co-added spectrum of Capella obtained with the Chandra satellite, which is probably the highest signal-to-noise observation achieved for a stellar source in the 25-175 A soft X-ray region. Good agreement is found between theory and experiment, indicating that the Fe XV lines are reliably detected in Chandra spectra, and hence may be employed as diagnostics to determine the temperature and/or density of the emitting plasma. However the line blending in the Chandra data is such that individual emission lines are difficult to measure accurately, and fluxes may only be reliably determined via detailed profile fitting of the observations. The co-added Capella spectrum is made available to hopefully encourage further exploration of the soft X-ray region in astronomical sources.
New fully relativistic calculations of radiative rates and electron impact excitation cross sections for Fe XVI are used to determine theoretical emission-line ratios applicable to the 251 - 361 A and 32 - 77 A portions of the extreme-ultraviolet (EU
Observations of Fe XVIII and Fe XIX X-ray, EUV, and FUV line emission, formed at the peak of Capellas (alpha Aurigae) emission measure distribution and ubiquitous in spectra of many cool stars and galaxies, provide a unique opportunity to test the ro
Strong, delayed X-ray line emission is detected in the afterglow of GRB 030227, appearing near the end of the XMM-Newton observation, nearly twenty hours after the burst. The observed flux in the lines, not simply the equivalent width, sharply increa
The Hitomi results for the Perseus cluster have shown that accurate atomic models are essential to the success of X-ray spectroscopic missions, and just as important as knowledge on instrumental calibration and astrophysical modeling. Preparing the m
Using data from the Geostationary Operational Environmental Satellites (GOES) spacecraft in the 1-8 AA wavelength range for Solar Cycles 23, 24, and part of Cycles 21 and 22, we compare mean temporal parameters (rising, decay times, duration) and the