ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for nucleosynthesis in supernova $gamma$-process: Universal scaling on p-nuclei

56   0   0.0 ( 0 )
 نشر من قبل Takehito Hayakawa
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With analyzing the solar system abundance, we have found two universal scaling laws concerning the p- and s-nuclei. They indicate that the gamma-process in supernova (SN) explosions is the most promising origin of the p-nuclei that has been discussed with many possible nuclear reactions and sites for about fifty years. In addition the scalings provide new concepts: an universality of the gamma-process and a new nuclear cosmochronometer. We have carried out gamma-process nucleosynthesis calculations for typical core-collapse SN explosion models and the results satisfy the observed scalings.



قيم البحث

اقرأ أيضاً

The $ u p$ process appears in proton-rich, hot matter which is expanding in a neutrino wind and may be realised in explosive environments such as core-collapse supernovae or in outflows from accretion disks. The impact of uncertainties in nuclear rea ction cross sections on the finally produced abundances has been studied by applying Monte Carlo variation of all astrophysical reaction rates in a large reaction network. As the detailed astrophysical conditions of the $ u p$ process still are unknown, a parameter study was performed, with 23 trajectories covering a large range of entropies and $Y_mathrm{e}$. The resulting abundance uncertainties are given for each trajectory. The $ u p$ process has been speculated to contribute to the light $p$ nuclides but it was not possible so far to reproduce the solar isotope ratios. It is found that it is possible to reproduce the solar $^{92}$Mo/$^{94}$Mo abundance ratio within nuclear uncertainties, even within a single trajectory. The solar values of the abundances in the Kr-Sr region relative to the Mo region, however, cannot be achieved within a single trajectory. They may still be obtained from a weighted superposition of different trajectories, though, depending on the actual conditions in the production site. For a stronger constraint of the required conditions, it would be necessary to reduce the uncertainties in the 3$alpha$ and $^{56}$Ni(n,p)$^{56}$Co rates at temperatures $T>3$ GK.
The rapid neutron capture process (r process) is believed to be responsible for about half of the production of the elements heavier than iron and contributes to abundances of some lighter nuclides as well. A universal pattern of r-process element ab undances is observed in some metal-poor stars of the Galactic halo. This suggests that a well-regulated combination of astrophysical conditions and nuclear physics conspires to produce such a universal abundance pattern. The search for the astrophysical site for r-process nucleosynthesis has stimulated interdisciplinary research for more than six decades. There is currently much enthusiasm surrounding evidence for r-process nucleosynthesis in binary neutron star mergers in the multi-wavelength follow-up observations of kilonova/gravitational-wave GRB170807A/GW170817. Nevertheless, there remain questions as to the contribution over the history of the Galaxy to the current solar-system r-process abundances from other sites such as neutrino-driven winds or magnetohydrodynamical ejection of material from core-collapse supernovae. In this review we highlight some current issues surrounding the nuclear physics input, astronomical observations, galactic chemical evolution, and theoretical simulations of r-process astrophysical environments with the goal of outlining a path toward resolving the remaining mysteries of the r process.
The nucleosynthesis of elements beyond iron is dominated by the s and r processes. However, a small amount of stable isotopes on the proton-rich side cannot be made by neutron capture and are thought to be produced by photodisintegration reactions on existing seed nuclei in the so-called p process. So far most of the p-process reactions are not yet accessible by experimental techniques and have to be inferred from statistical Hauser-Feshbach model calculations. The parametrization of these models has to be constrained by measurements on stable proton-rich nuclei. A series of (n,$gamma$) activation measurements on p nuclei, related by detailed balance to the respective photodisintegrations, were carried out at the Karlsruhe Van de Graaff accelerator using the $^7$Li(p,n)$^7$Be source for simulating a Maxwellian neutron distribution of kT= 25 keV. We present here preliminary results of our extended measuring program in the mass range between A=74 and A=132, including first experimental (n,$gamma$) cross sections of $^{74}$Se, $^{84}$Sr, $^{120}$Te and $^{132}$Ba, and an improved value for $^{130}$Ba. In all cases we find perfect agreement with the recommended MACS predictions from the Bao et al. compilation.
The propagation of uncertainties in reaction cross sections and rates of neutron-, proton-, and alpha-induced reactions into the final isotopic abundances obtained in nucleosynthesis models is an important issue in studies of nucleosynthesis and Gala ctic Chemical Evolution. We developed a Monte Carlo method to allow large-scale postprocessing studies of the impact of nuclear uncertainties on nucleosynthesis. Temperature-dependent rate uncertainties combining realistic experimental and theoretical uncertainties are used. From detailed statistical analyses uncertainties in the final abundances are derived as probability density distributions. Furthermore, based on rate and abundance correlations an automated procedure identifies the most important reactions in complex flow patterns from superposition of many zones or tracers. The method so far was already applied to a number of nucleosynthesis processes. Here we focus on the production of p-nuclei in white dwarfs exploding as thermonuclear (type Ia) supernovae. We find generally small uncertainties in the final abundances despite of the dominance of theoretical nuclear uncertainties. A separate analysis of low- and high-density regions indicates that the total uncertainties are dominated by the high-density regions.
141 - Stephane Goriely , 2011
Although the rapid neutron-capture process, or r-process, is fundamentally important for explaining the origin of approximately half of the stable nuclei with A > 60, the astrophysical site of this process has not been identified yet. Here we study r -process nucleosynthesis in material that is dynamically ejected by tidal and pressure forces during the merging of binary neutron stars (NSs) and within milliseconds afterwards. For the first time we make use of relativistic hydrodynamical simulations of such events, defining consistently the conditions that determine the nucleosynthesis, i.e., neutron enrichment, entropy, early density evolution and thus expansion timescale, and ejecta mass. We find that 10^{-3}-10^{-2} solar masses are ejected, which is enough for mergers to be the main source of heavy (A > 140) galactic r-nuclei for merger rates of some 10^{-5} per year. While asymmetric mergers eject 2-3 times more mass than symmetric ones, the exact amount depends weakly on whether the NSs have radii of ~15 km for a stiff nuclear equation of state (EOS) or ~12 km for a soft EOS. R-process nucleosynthesis during the decompression becomes largely insensitive to the detailed conditions because of efficient fission recycling, producing a composition that closely follows the solar r-abundance distribution for nuclei with mass numbers A > 140. Estimating the light curve powered by the radioactive decay heating of r-process nuclei with an approximative model, we expect high emission in the B-V-R bands for 1-2 days with potentially observable longer duration in the case of asymmetric mergers because of the larger ejecta mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا