ترغب بنشر مسار تعليمي؟ اضغط هنا

R-Process Nucleosynthesis in Dynamically Ejected Matter of Neutron Star Mergers

141   0   0.0 ( 0 )
 نشر من قبل Hans-Thomas Janka
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Although the rapid neutron-capture process, or r-process, is fundamentally important for explaining the origin of approximately half of the stable nuclei with A > 60, the astrophysical site of this process has not been identified yet. Here we study r-process nucleosynthesis in material that is dynamically ejected by tidal and pressure forces during the merging of binary neutron stars (NSs) and within milliseconds afterwards. For the first time we make use of relativistic hydrodynamical simulations of such events, defining consistently the conditions that determine the nucleosynthesis, i.e., neutron enrichment, entropy, early density evolution and thus expansion timescale, and ejecta mass. We find that 10^{-3}-10^{-2} solar masses are ejected, which is enough for mergers to be the main source of heavy (A > 140) galactic r-nuclei for merger rates of some 10^{-5} per year. While asymmetric mergers eject 2-3 times more mass than symmetric ones, the exact amount depends weakly on whether the NSs have radii of ~15 km for a stiff nuclear equation of state (EOS) or ~12 km for a soft EOS. R-process nucleosynthesis during the decompression becomes largely insensitive to the detailed conditions because of efficient fission recycling, producing a composition that closely follows the solar r-abundance distribution for nuclei with mass numbers A > 140. Estimating the light curve powered by the radioactive decay heating of r-process nuclei with an approximative model, we expect high emission in the B-V-R bands for 1-2 days with potentially observable longer duration in the case of asymmetric mergers because of the larger ejecta mass.



قيم البحث

اقرأ أيضاً

Heavy elements like gold, platinum or uranium are produced in the r-process, which needs neutron-rich and explosive environments. Neutron star mergers are a promising candidate for an r-process site. They exhibit three different channels for matter e jection fulfilling these conditions: dynamic ejecta due to tidal torques, neutrino-driven winds and evaporating matter from the accretion disk. We present a first study of the integrated nucleosynthesis for a neutrino-driven wind from a neutron star merger with a hyper-massive neutron star. Trajectories from a recent hydrodynamical simulation are divided into four different angle regions and post-processed with a reaction network. We find that the electron fraction varies around $Y_e approx 0.1 - 0.4$, but its distribution differs for every angle of ejection. Hence, the wind ejecta do not undergo a robust r-process, but rather possess distinct nucleosynthesis yields depending on the angle range. Compared to the dynamic ejecta, a smaller amount of neutron-rich matter gets unbound, but the production of lighter heavy elements with $A lesssim 130$ in the neutrino-driven wind can complement the strong r-process of the dynamic ejecta.
The rapid neutron capture process (r process) is believed to be responsible for about half of the production of the elements heavier than iron and contributes to abundances of some lighter nuclides as well. A universal pattern of r-process element ab undances is observed in some metal-poor stars of the Galactic halo. This suggests that a well-regulated combination of astrophysical conditions and nuclear physics conspires to produce such a universal abundance pattern. The search for the astrophysical site for r-process nucleosynthesis has stimulated interdisciplinary research for more than six decades. There is currently much enthusiasm surrounding evidence for r-process nucleosynthesis in binary neutron star mergers in the multi-wavelength follow-up observations of kilonova/gravitational-wave GRB170807A/GW170817. Nevertheless, there remain questions as to the contribution over the history of the Galaxy to the current solar-system r-process abundances from other sites such as neutrino-driven winds or magnetohydrodynamical ejection of material from core-collapse supernovae. In this review we highlight some current issues surrounding the nuclear physics input, astronomical observations, galactic chemical evolution, and theoretical simulations of r-process astrophysical environments with the goal of outlining a path toward resolving the remaining mysteries of the r process.
We consider hot accretion disk outflows from black hole - neutron star mergers in the context of the nucleosynthesis they produce. We begin with a three dimensional numerical model of a black hole - neutron star merger and calculate the neutrino and antineutrino fluxes emitted from the resulting accretion disk. We then follow the element synthesis in material outflowing the disk along parameterized trajectories. We find that at least a weak r-process is produced, and in some cases a main r-process as well. The neutron-rich conditions required for this production of r-process nuclei stem directly from the interactions of the neutrinos emitted by the disk with the free neutrons and protons in the outflow.
This is an exciting time for the study of r-process nucleosynthesis. Recently, a neutron star merger GW170817 was observed in extraordinary detail with gravitational waves and electromagnetic radiation from radio to gamma rays. The very red color of the associated kilonova suggests that neutron star mergers are an important r-process site. Astrophysical simulations of neutron star mergers and core collapse supernovae are making rapid progress. Detection of both, electron neutrinos and antineutrinos from the next galactic supernova will constrain the composition of neutrino-driven winds and provide unique nucleosynthesis information. Finally FRIB and other rare-isotope beam facilities will soon have dramatic new capabilities to synthesize many neutron-rich nuclei that are involved in the r-process. The new capabilities can significantly improve our understanding of the r-process and likely resolve one of the main outstanding problems in classical nuclear astrophysics. However, to make best use of the new experimental capabilities and to fully interpret the results, a great deal of infrastructure is needed in many related areas of astrophysics, astronomy, and nuclear theory. We will place these experiments in context by discussing astrophysical simulations and observations of r-process sites, observations of stellar abundances, galactic chemical evolution, and nuclear theory for the structure and reactions of very neutron-rich nuclei. This review paper was initiated at a three-week International Collaborations in Nuclear Theory program in June 2016 where we explored promising r-process experiments and discussed their likely impact, and their astrophysical, astronomical, and nuclear theory context.
Simulations of r-process nucleosynthesis require nuclear physics information for thousands of neutron-rich nuclear species from the line of stability to the neutron drip line. While arguably the most important pieces of nuclear data for the r-process are the masses and beta decay rates, individual neutron capture rates can also be of key importance in setting the final r-process abundance pattern. Here we consider the influence of neutron capture rates in forming the A~80 and rare earth peaks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا