ﻻ يوجد ملخص باللغة العربية
The role of systematic errors induced by thermal fluctuations is analyzed for the SPOrt experiment with the aim at estimating their impact on the measurement of the Cosmic Microwave Background Polarization (CMBP). The transfer functions of the antenna devices from temperature to data fluctuations are computed, by writing them in terms of both instrument and thermal environment parameters. In addition, the corresponding contamination maps are estimated, along with their polarized power spectra, for different behaviours of the instabilities. The result is that thermal effects are at a negligible level even for fluctuations correlated with the Sun illumination provided their frequency $f_{tf}$ is larger than that of the Sun illumination ($f_{day}$) by a factor $f_{tf} / f_{day} > 30$, which defines a requirement for the statistical properties of the temperature behaviour as well. The analysis with actual SPOrt operative parameters shows that the instrument is only weakly sensitive to temperature instabilities, the main contribution coming from the cryogenic stage. The contamination on the E-mode spectrum does not significantly pollute the CMBP signal and no specific data cleaning seems to be needed.
BaR-SPOrt (Balloon-borne Radiometers for Sky Polarisation Observations) is an experiment to measure the linearly polarized emission of sky patches at 32 and 90 GHz with sub-degree angular resolution. It is equipped with high sensitivity correlation p
We study the effects of thermally induced capillary waves in the fragmentation of a liquid ligament into multiple nano-droplets. Our numerical implementation is based on a fluctuating lattice Boltzmann (LB) model for non-ideal multicomponent fluids,
SPOrt (Sky Polarization Observatory) is a space experiment to be flown on the International Space Station during Early Utilization Phase aimed at measuring the microwave polarized emission with FWHM = 7deg, in the frequency range 22-90 GHz. The Galac
The Sky Polarization Observatory (SPOrt) is presented as a project aimed to measure the diffuse sky polarized emission, from the International Space Station, in the frequency range 20-90 GHz with 7 degrees of HPBW. The SPOrt experimental configuratio
Broad theoretical arguments are proposed to show, formally, that the magnitude G of the temperature gradients in turbulent thermal convection at high Rayleigh numbers obeys the same advection-diffusion equation that governs the temperature fluctuatio