ﻻ يوجد ملخص باللغة العربية
We study the effects of thermally induced capillary waves in the fragmentation of a liquid ligament into multiple nano-droplets. Our numerical implementation is based on a fluctuating lattice Boltzmann (LB) model for non-ideal multicomponent fluids, including non-equilibrium stochastic fluxes mimicking the effects of molecular forces at the nanoscales. We quantitatively analyze the statistical distribution of the break-up times and the droplet volumes after the fragmentation process, at changing the two relevant length scales of the problem, i.e., the thermal length-scale and the ligament size. The robustness of the observed findings is also corroborated by quantitative comparisons with the predictions of sharp interface hydrodynamics. Beyond the practical importance of our findings for nanofluidic engineering devices, our study also explores a novel application of LB in the realm of nanofluidic phenomena.
The effects of insulating lids on the convection beneath were investigated experimentally using rectangular convection cells in the flux Rayleigh number range $2.3times10^{9}leq Ra_F leq 1.8times10^{11}$ and cylindrical cells in the range $1.4times10
We apply a previously developed asymptotic model (J. Fluid. Mech. 915, A133 (2021)) to study instabilities of free surface films of nanometric thickness on thermally conductive substrates in two and three spatial dimensions. While the specific focus
Turbulent flows frequently accompany physical, chemical and biological processes, such as mixing, two-phase flow, combustion and even foraging by bacteria and plankton larvae, all of which are in principle subject to thermal fluctuations already on s
We present mesoscale numerical simulations of Rayleigh-Benard (RB) convection in a two-dimensional model emulsion. The systems under study are constituted of finite-size droplets, whose concentration Phi_0 is systematically varied from small (Newtoni
The role of systematic errors induced by thermal fluctuations is analyzed for the SPOrt experiment with the aim at estimating their impact on the measurement of the Cosmic Microwave Background Polarization (CMBP). The transfer functions of the antenn