ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Near Infrared Imaging toward Vela Molecular Ridge C - 1: A Remarkable Embedded Cluster in RCW 36 -

61   0   0.0 ( 0 )
 نشر من قبل Daisuke Baba
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present deep near-infrared (J, H, Ks) images toward an embedded cluster which lies in a C18O clump in the cloud C of the Vela Molecular Ridge. This cluster has at least ~ 350 members and a radius of ~ 0.5 pc. The stellar surface number density is approximately 3000 stars pc^-2 in the central 0.1 pc x 0.1 pc region of the cluster. This is much higher than most of the young clusters within 1 kpc of the Sun. From the comparison of the luminosity function and near-infrared excess fraction with those of other embedded clusters, we estimate that the age of this cluster is approximately 2-3 Myr. This cluster exhibits an excess of brighter stars in its central region, from which we conclude that the more massive stars are located near the cluster center.



قيم البحث

اقرأ أيضاً

A collision between two molecular clouds is one possible candidate for high-mass star formation. The HII region RCW 36, located in the Vela molecular ridge, contains a young star cluster with two O-type stars. We present new CO observations of RCW 36 with NANTEN2, Mopra, and ASTE using $^{12}$CO($J$ = 1-0, 2-1, 3-2) and $^{13}$CO($J$ = 2-1) line emissions. We have discovered two molecular clouds lying at the velocities $V_mathrm{LSR} sim$5.5 and 9 km s$^{-1}$. Both clouds are likely to be physically associated with the star cluster, as verified by the good spatial correspondence among the two clouds, infrared filaments, and the star cluster. We also found a high intensity ratio of $sim$0.6-1.2 for CO $J$ = 3-2 / 1-0 toward both clouds, indicating that the gas temperature has been increased due to heating by the O-type stars. We propose that the O-type stars in RCW 36 were formed by a collision between the two clouds, with a relative velocity separation of 5 km s$^{-1}$. The complementary spatial distributions and the velocity separation of the two clouds are in good agreement with observational signatures expected for O-type star formation triggered by a cloud-cloud collision. We also found a displacement between the complementary spatial distributions of the two clouds, which we estimate to be 0.3 pc assuming the collision angle to be 45$^{circ}$ relative to the line-of-sight. We estimate the collision timescale to be $sim$10$^5$ yr. It is probable that the cluster age by Ellerbroek et al. (2013b) is dominated by the low-mass members which were not formed under the triggering by cloud-cloud collision, and that the O-type stars in the center of the cluster are explained by the collisional triggering independently from the low-mass star formation.
We made CO ($J$ = 1--0, 2--1, and 3--2) observations toward an H{sc ii} region RCW~32 in the Vela Molecular Ridge. The CO gas distribution associated with the H{sc ii} region was revealed for the first time at a high resolution of 22 arcsec. The resu lts revealed three distinct velocity components which show correspondence with the optical dark lanes and/or H$alpha$ distribution. Two of the components show complementary spatial distribution which suggests collisional interaction between them at a relative velocity of $sim$4 km~s$^{-1}$. Based on these results, we present a hypothesis that cloud-cloud collision determined the cloud distribution and triggered formation of the exciting star ionizing RCW~32. The collision time scale is estimated from the cloud size and the velocity separation to be $sim$2 Myrs and the collision terminated $sim$1 Myr ago, which is consistent with an age of the exciting star and the associated cluster. By combing the previous works on the H{sc ii} regions in the Vela Molecular Ridge, we argue that the majority, at least four, of the H{sc ii} regions in the Ridge were formed by triggering of cloud-cloud collision.
The aim of this paper is to identify the young protostellar counterparts associated to dust millimeter cores of the Vela Molecular Ridge Cloud D through new IR observations (H_2 narrow-band at 2.12 micron and N broad band at 10.4 micron) along with a n investigation performed on the existing IR catalogues. The association of mm continuum emission with infrared sources from catalogues (IRAS, MSX, 2MASS), JHK data from the literature and new observations, has been established according to spatial coincidence, infrared colours and spectral energy distributions. Only 7 out of 29 resolved mm cores (and 16 out of the 26 unresolved ones) do not exhibit signposts of star formation activity. The other ones are clearly associated with: far-IR sources, H_2 jets or near-IR objects showing a high intrinsic colour excess. The distribution of the spectral indices pertaining to the associated sources is peaked at values typical of Class I objects, while three objects are signalled as candidates Class 0 sources. We remark the high detection rate (30%) of H_2 jets driven by sources located inside the mm-cores. They appear not driven by the most luminous objects in the field, but rather by less luminous objects in young clusters, testifying the co-existence of both low- and intermediate-mass star formation. The presented results reliably describe the young population of VMR-D. However, the statistical evaluation of activity vs inactivity of the investigated cores, even in good agreement with results found for other star forming regions, seems to reflect the limiting sensitivity of the available facilities rather than any property intrinsic to the mm-condensations.
179 - B. Neichel 2015
We investigate the star formation activity in a young star forming cluster embedded at the edge of the RCW 41 HII region. As a complementary goal, we aim at demonstrating the gain provided by Wide-Field Adaptive Optics instruments to study young clus ters. We used deep, JHKs images from the newly commissioned Gemini-GeMS/GSAOI instrument, complemented with Spitzer IRAC observations, in order to study the photometric properties of the young stellar cluster. GeMS is an AO instrument, delivering almost diffraction limited images over a field of 2 across. The exquisite angular resolution allows us to reach a limiting magnitude of J = 22 for 98% completeness. The combination of the IRAC photometry with our JHKs catalog is used to build color-color diagrams, and select Young Stellar Objects (YSOs) candidates. We detect the presence of 80 Young Stellar Object (YSO) candidates. Those YSOs are used to infer the cluster age, which is found to be in the range 1 to 5 Myr. We find that 1/3 of the YSOs are in a range between 3 to 5 Myr, while 2/3 of the YSO are < 3 Myr. When looking at the spatial distribution of these two populations, we evidence a potential age gradient across the field, suggesting sequential star formation. We construct the IMF, and show that we can sample the mass distribution well into the brown dwarf regime (down to 0.01 Msun). The logarithmic mass function rises to peak at 0.3 Msun, before turning over and declining into the brown dwarf regime. The total cluster mass derived is estimated to be 78 +/- 18 Msun, while the ratio of brown dwarfs to star derived is 18 p/- 5 %. When comparing with other young clusters, we find that the IMF shape of the young cluster embedded within RCW 41 is consistent with those of Trapezium, IC 348 or Chamaeleon I, except for the IMF peak, which happens to be at higher mass. This characteristic is also seen in clusters like NGC 6611 or even Taurus.
175 - Fabrizio Massi 2010
Context. The Vela Molecular Ridge hosts a number of young embedded star clusters in the same evolutionary stage. Aims. The main aim of the present work is testing whether the fraction of members with a circumstellar disk in a sample of clusters in th e cloud D of the Vela Molecular Ridge, is consistent with relations derived for larger samples of star clusters with an age spread. Besides, we want to constrain the age of the young embedded star clusters associated with cloud D. Methods. We carried out L (3.78 microns) photometry on images of six young embedded star clusters associated with cloud D of the Vela Molecular Ridge, taken with ISAAC at the VLT. These data are complemented with the available HKs photometry. The 6 clusters are roughly of the same size and appear to be in the same evolutionary stage. The fraction of stars with a circumstellar disk was measured in each cluster by counting the fraction of sources displaying a NIR excess in colour-colour (HKsL) diagrams. Results. The L photometry allowed us to identify the NIR counterparts of the IRAS sources associated with the clusters. The fraction of stars with a circumstellar disk appears to be constant within errors for the 6 clusters. There is a hint that this is lower for the most massive stars. The age of the clusters is constrained to ~1-2 Myr. Conclusions. The fraction of stars with a circumstellar disk in the observed sample is consistent with the relations derived from larger samples of star clusters and with other age estimates for cloud D. The fraction may be lower for the most massive stars. Our results agree with a scenario where all intermediate and low-mass stars form with a disk, whose lifetime is shorter for higher mass stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا