ترغب بنشر مسار تعليمي؟ اضغط هنا

Detailed CO ($J$ = 1--0, 2--1 and 3--2) observations toward an H{sc ii} region RCW~32 in the Vela Molecular Ridge

279   0   0.0 ( 0 )
 نشر من قبل Rei Enokiya Dr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We made CO ($J$ = 1--0, 2--1, and 3--2) observations toward an H{sc ii} region RCW~32 in the Vela Molecular Ridge. The CO gas distribution associated with the H{sc ii} region was revealed for the first time at a high resolution of 22 arcsec. The results revealed three distinct velocity components which show correspondence with the optical dark lanes and/or H$alpha$ distribution. Two of the components show complementary spatial distribution which suggests collisional interaction between them at a relative velocity of $sim$4 km~s$^{-1}$. Based on these results, we present a hypothesis that cloud-cloud collision determined the cloud distribution and triggered formation of the exciting star ionizing RCW~32. The collision time scale is estimated from the cloud size and the velocity separation to be $sim$2 Myrs and the collision terminated $sim$1 Myr ago, which is consistent with an age of the exciting star and the associated cluster. By combing the previous works on the H{sc ii} regions in the Vela Molecular Ridge, we argue that the majority, at least four, of the H{sc ii} regions in the Ridge were formed by triggering of cloud-cloud collision.



قيم البحث

اقرأ أيضاً

We present results of wide-field $^{12}$CO ($J = 2 - 1$) and $^{13}$CO ($J = 2 - 1$) observations toward the Aquila Rift and Serpens molecular cloud complexes (25$^circ < l < 33^circ$ and $1^circ < b < 6^circ$) at an angular resolution of 3$$.4 ($app rox$ 0.25 pc) and at a velocity resolution of 0.079 km s$^{-1}$ with the velocity coverage of $-5$ km s$^{-1} < V_{rm LSR} <$ 35 km s$^{-1}$. We found that the $^{13}$CO emission better traces the structures seen in the extinction map and derived the $X_{rm ^{13}CO}$-factor of this region. Applying texttt{SCIMES} to the $^{13}$CO data cube, we identified 61 clouds and derived their masses, radii, and line widths. The line-width-radius relation of the identified clouds basically follows those of nearby molecular clouds. Majority of the identified clouds are close to virial equilibrium although the dispersion is large. By inspecting the $^{12}$CO channel maps by eye, we found several arcs which are spatially extended to 0.2 $-$ 3 degree in length. In the longitude-velocity diagrams of $^{12}$CO, we also found the two spatially-extended components which appear to converge toward Serpens South and W40 region. The existence of two components with different velocities and arcs suggests that large-scale expanding bubbles and/or flows play a role in the formation and evolution of the Serpens South and W40 cloud.
155 - N. Furukawa , A. Ohama , T. Fukuda 2014
We have made new CO observations of two molecular clouds, which we call jet and arc clouds, toward the stellar cluster Westerlund 2 and the TeV gamma-ray source HESS J1023-575. The jet cloud shows a linear structure from the position of Westerlund 2 on the east. In addition, we have found a new counter jet cloud on the west. The arc cloud shows a crescent shape in the west of HESS J1023-575. A sign of star formation is found at the edge of the jet cloud and gives a constraint on the age of the jet cloud to be ~Myrs. An analysis with the multi CO transitions gives temperature as high as 20 K in a few places of the jet cloud, suggesting that some additional heating may be operating locally. The new TeV gamma-ray images by H.E.S.S. correspond to the jet and arc clouds spatially better than the giant molecular clouds associated with Westerlund 2. We suggest that the jet and arc clouds are not physically linked with Westerlund 2 but are located at a greater distance around 7.5 kpc. A microquasar with long-term activity may be able to offer a possible engine to form the jet and arc clouds and to produce the TeV gamma-rays, although none of the known microquasars have a Myr age or steady TeV gamma-rays. Alternatively, an anisotropic supernova explosion which occurred ~Myr ago may be able to form the jet and arc clouds, whereas the TeV gamma-ray emission requires a microquasar formed after the explosion.
We have carried out 12CO(J =2-1) and 12CO(J =3-2) observations at spatial resolutions of 1.0-3.8 pc toward the entirety of loops 1 and 2 and part of loop 3 in the Galactic center with NANTEN2 and ASTE. These new results revealed detailed distribution s of the molecular gas and the line intensity ratio of the two transitions, R3-2/2-1. In the three loops, R3-2/2-1 is in a range from 0.1 to 2.5 with a peak at ~ 0.7 while that in the disk molecular gas is in a range from 0.1 to 1.2 with a peak at 0.4. This supports that the loops are more highly excited than the disk molecular gas. An LVG analysis of three transitions, 12CO J =3-2 and 2-1 and 13CO J =2-1, toward six positions in loops 1 and 2 shows density and temperature are in a range 102.2 - 104.7 cm-3 and 15-100 K or higher, respectively. Three regions extended by 50-100 pc in the loops tend to have higher excitation conditions as characterized by R3-2/2-1 greater than 1.2. The highest ratio of 2.5 is found in the most developed foot points between loops 1 and 2. This is interpreted that the foot points indicate strongly shocked conditions as inferred from their large linewidths of 50-100 km s-1, confirming the suggestion by Torii et al. (2010b). The other two regions outside the foot points suggest that the molecular gas is heated up by some additional heating mechanisms possibly including magnetic reconnection. A detailed analysis of four foot points have shown a U shape, an L shape or a mirrored-L shape in the b-v distribution. It is shown that a simple kinematical model which incorporates global rotation and expansion of the loops is able to explain these characteristic shapes.
Gravitational accretion accumulates the original mass, and this process is crucial for us to understand the initial phases of star formation. Using the specific infall profiles in optically thick and thin lines, we searched the clumps with infall mot ion from the Milky Way Imaging Scroll Painting (MWISP) CO data in previous work. In this study, we selected 133 sources of them as a sub-sample for further research and identification. The excitation temperatures of these sources are between 7.0 and 38.5 K, while the H_2 column densities are between 10^21 and 10^23 cm^-2. We have observed optically thick lines HCO+ (1-0) and HCN (1-0) using the DLH 13.7-m telescope, and found 56 sources of them with blue profile and no red profile in these two lines, which are likely to have infall motions, with the detection rate of 42%. It suggests that using CO data to restrict sample can effectively improve the infall detection rate. Among these confirmed infall sources, there are 43 associated with Class 0/I young stellar objects (YSOs), and 13 are not. These 13 sources are probably associated with the sources in earlier evolutionary stage. By comparison, the confirmed sources which are associated with Class 0/I YSOs have higher excitation temperatures and column densities, while the other sources are colder and have lower column densities. Most infall velocities of the sources we confirmed are between 10^-1 to 10^0 km s^-1, which is consistent with previous studies.
We present CO(3-2) interferometric observations of the central region of the Seyfert 2 galaxy NGC 1068 using the Submillimeter Array, together with CO(1-0) data taken with the Owens Valley Radio Observatory Millimeter Array. Both the CO(3-2) and CO(1 -0) emission lines are mainly distributed within ~5 arcsec of the nucleus and along the spiral arms, but the intensity distributions show differences; the CO(3-2) map peaks in the nucleus, while the CO(1-0) emission is mainly located along the spiral arms. The CO(3-2)/CO(1-0) ratio is about 3.1 in the nucleus, which is four times as large as the average line ratio in the spiral arms, suggesting that the molecular gas there must be affected by the radiation arising from the AGN. On the other hand, the line ratios in the spiral arms vary over a wide range from 0.24 to 2.34 with a average value around 0.75, which is similar to the line ratios of star-formation regions, indicating that the molecular gas is affected by star formation. Besides, we see a tight correlation between CO(3-2)/(1-0) ratios in the spiral arms and star formation rate surface densities derived from Spitzer 8 {mu}m dust flux densities. We also compare the CO(3-2)/(1-0) ratio and the star formation rate at different positions within the spiral arms; both are found to decrease as the radius from the nucleus increases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا