ترغب بنشر مسار تعليمي؟ اضغط هنا

VLT/NACO infrared adaptive optics images of small scale structures in OMC1

72   0   0.0 ( 0 )
 نشر من قبل Daniel Rouan
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Near-infrared observations of line emission from excited H2 and in the continuum are reported in the direction of the Orion molecular cloud OMC1, using the European Southern Observatory Very Large Telescope UT4, equipped with the NAOS adaptive optics system and the CONICA infrared array camera. Spatial resolution has been achieved at close to the diffraction limit of the telescope (0.08 - 0.12) and images show a wealth of morphological detail. Structure is not fractal but shows two preferred scale sizes of 2.4 (1100 AU) and 1.2 (540 AU), where the larger scale may be associated with star formation.



قيم البحث

اقرأ أيضاً

The high angular resolution and dynamic range achieved by the NACO adaptive optics system on the VLT is an excellent tool to study the morphology of Planetary Nebulae (PNe). We observed four stars in different evolutionary stages from the AGB to the PNe phase. The images of the inner parts of the PN Hen 2-113 reveal the presence of a dusty torus tilted with respect to all the other structures of the nebula and the present of hot dust close to the hot central star. The NACO observations of Roberts 22 reveal an amazingly complex nebular morphology with a S-shape that can be interpreted in terms of the warped disc scenario of Icke (2003). Combined NACO and MIDI (the VLTI mid-infrared interferometer) observations of the nebula OH 231.8+4.2 have enabled us to resolve a very compact (diameter of 30-40 mas, corresponding to 40-50 a.u.) dusty structure in the core of the nebula. Finally, recent observations of the AGB star V Hydrae show that this star present a departure from spherical symmetry in its inner shell and is probably on its way to become an asymmetrical planetary nebula. These observations show that NACO is a great instrument for the discovery and study of small structures in circumstellar envelopes and PNe and a good complement to interferometric devices.
131 - Pierre Kervella 2009
Context: Betelgeuse is one the largest stars in the sky in terms of angular diameter. Structures on the stellar photosphere have been detected in the visible and near-infrared as well as a compact molecular environment called the MOLsphere. Mid-infra red observations have revealed the nature of some of the molecules in the MOLsphere, some being the precursor of dust. Aims: Betelgeuse is an excellent candidate to understand the process of mass loss in red supergiants. Using diffraction-limited adaptive optics (AO) in the near-infrared, we probe the photosphere and close environment of Betelgeuse to study the wavelength dependence of its extension, and to search for asymmetries. Methods: We obtained AO images with the VLT/NACO instrument, taking advantage of the cube mode of the CONICA camera to record separately a large number of short-exposure frames. This allowed us to adopt a lucky imaging approach for the data reduction, and obtain diffraction-limited images over the spectral range 1.04-2.17 $mu$m in 10 narrow-band filters. Results: In all filters, the photosphere of Betelgeuse appears partly resolved. We identify an asymmetric envelope around the star, with in particular a relatively bright plume extending in the southwestern quadrant up to a radius of approximately six times the photosphere. The CN molecule provides an excellent match to the 1.09 mic bandhead in absorption in front of the stellar photosphere, but the emission spectrum of the plume is more difficult to interpret. Conclusions: Our AO images show that the envelope surrounding Betelgeuse has a complex and irregular structure. We propose that the southwestern plume is linked either to the presence of a convective hot spot on the photosphere, or to the rotation of the star.
190 - Sarah Kendrew 2012
GRAVITY is a second generation instrument for the VLT Interferometer, designed to enhance the near-infrared astrometric and spectro-imaging capabilities of VLTI. Combining beams from four telescopes, GRAVITY will provide an astrometric precision of o rder 10 micro-arcseconds, imaging resolution of 4 milli-arcseconds, and low and medium resolution spectro-interferometry, pushing its performance far beyond current infrared interfero- metric capabilities. To maximise the performance of GRAVITY, adaptive optics correction will be implemented at each of the VLT Unit Telescopes to correct for the effects of atmospheric turbulence. To achieve this, the GRAVITY project includes a development programme for four new wavefront sensors (WFS) and NIR-optimized real time control system. These devices will enable closed-loop adaptive correction at the four Unit Telescopes in the range 1.4-2.4 {mu}m. This is crucially important for an efficient adaptive optics implementation in regions where optically bright references sources are scarce, such as the Galactic Centre. We present here the design of the GRAVITY wavefront sensors and give an overview of the expected adaptive optics performance under typical observing conditions. Benefiting from newly developed SELEX/ESO SAPHIRA electron avalanche photodiode (eAPD) detectors providing fast readout with low noise in the near-infrared, the AO systems are expected to achieve residual wavefront errors of leq400 nm at an operating frequency of 500 Hz.
643 - V. Testa 2008
<Context>. We report on near-infrared (IR) observations of the three anomalous X-ray pulsars XTE J1810-197, 1RXS J1708-4009, 1E 1841-045 and the soft gamma-ray repeater SGR 1900+14, taken with the ESO-VLT, the Gemini, and the CFHT telescopes. <Aims>. This work is aimed at identifying and/or confirming the IR counterparts of these magnetars, as well as at measuring their possible IR variability. <Methods>. In order to perform photometry of objects as faint as Ks~20, we have used data taken with the largest telescopes, equipped with the most advanced IR detectors and in most of the cases with Adaptive Optics devices. The latter are critical to achieve the sharp spatial accuracy required to pinpoint faint objects in crowded fields. <Results>. We confirm with high confidence the identification of the IR counterpart to XTE J1810-197, and its IR variability. For 1E 1841-045 and SGR 1900+14 we propose two candidate IR counterparts based on the detection of IR variability. For 1RXS J1708-4009 we show that none of the potential counterparts within the source X-ray error circle can be yet convincingly associated with this AXP. <Conclusions>. The IR variability of the AXP XTE J1810-197 does not follow the same monotonic decrease of its post-outburst X-ray emission. Instead, the IR variability appears more similar to the one observed in radio band, although simultaneous IR and radio observations are crucial to draw any conclusion in this respect. For 1E 1841-045 and SGR 1900+14, follow-up observations are needed to confirm our proposed candidates with higher confidence.
ERIS is an instrument that will both extend and enhance the fundamental diffraction limited imaging and spectroscopy capability for the VLT. It will replace two instruments that are now being maintained beyond their operational lifetimes, combine the ir functionality on a single focus, provide a new wavefront sensing module that makes use of the facility Adaptive Optics System, and considerably improve their performance. The instrument will be competitive with respect to JWST in several regimes, and has outstanding potential for studies of the Galactic Center, exoplanets, and high redshift galaxies. ERIS had its final design review in 2017, and is expected to be on sky in 2020. This contribution describes the instrument concept, outlines its expected performance, and highlights where it will most excel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا