ﻻ يوجد ملخص باللغة العربية
The most important weak nuclear interaction to the dynamics of stellar core collapse is electron capture, primarily on nuclei with masses larger than 60. In prior simulations of core collapse, electron capture on these nuclei has been treated in a highly parameterized fashion, if not ignored. With realistic treatment of electron capture on heavy nuclei come significant changes in the hydrodynamics of core collapse and bounce. We discuss these as well as the ramifications for the post-bounce evolution in core collapse supernovae.
Electron capture rates on neutron-rich nuclei (A>65) were calculated within the Random Phase Approximation with partial number formalism, including allowed and forbidden transitions. The partial occupation numbers were provided as a function of tempe
An 8.8 solar mass electron-capture supernova (SN) was simulated in spherical symmetry consistently from collapse through explosion to nearly complete deleptonization of the forming neutron star. The evolution time of about 9 s is short because of nuc
The impact of electron-capture (EC) cross sections on neutron-rich nuclei on the dynamics of core-collapse during infall and early post-bounce is studied performing spherically symmetric simulations in general relativity using a multigroup scheme for
The astrophysical site of the r-process is still uncertain, and a full exploration of the systematics of this process in terms of its dependence on nuclear properties from stability to the neutron drip-line within realistic stellar environments has s
Knowledge of the progenitors of core-collapse supernovae is a fundamental component in understanding the explosions. The recent progress in finding such stars is reviewed. The minimum initial mass that can produce a supernova has converged to 8 +/- 1