ترغب بنشر مسار تعليمي؟ اضغط هنا

The consequences of nuclear electron capture in core collapse supernovae

62   0   0.0 ( 0 )
 نشر من قبل William Raphael Hix
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The most important weak nuclear interaction to the dynamics of stellar core collapse is electron capture, primarily on nuclei with masses larger than 60. In prior simulations of core collapse, electron capture on these nuclei has been treated in a highly parameterized fashion, if not ignored. With realistic treatment of electron capture on heavy nuclei come significant changes in the hydrodynamics of core collapse and bounce. We discuss these as well as the ramifications for the post-bounce evolution in core collapse supernovae.



قيم البحث

اقرأ أيضاً

Electron capture rates on neutron-rich nuclei (A>65) were calculated within the Random Phase Approximation with partial number formalism, including allowed and forbidden transitions. The partial occupation numbers were provided as a function of tempe rature by Shell-Model Monte Carlo calculations, including an pairing+quadrupole interaction. Capture rates on relevent nuclei were calculated for density and temperature conditions during the core collapse of a massive star. It was found that electron captures on nuclei can compete with electron captures on free protons. Furthermore, they produce neutrinos with average energies lower than neutrinos emitted from captures on free protons, with possible consequences on the cooling of the core.
212 - L. Huedepohl 2009
An 8.8 solar mass electron-capture supernova (SN) was simulated in spherical symmetry consistently from collapse through explosion to nearly complete deleptonization of the forming neutron star. The evolution time of about 9 s is short because of nuc leon-nucleon correlations in the neutrino opacities. After a brief phase of accretion-enhanced luminosities (~200 ms), luminosity equipartition among all species becomes almost perfect and the spectra of electron antineutrinos and muon/tau antineutrinos very similar. We discuss consequences for the neutrino-driven wind as a nucleosynthesis site and for flavor oscillations of SN neutrinos.
340 - Aurelien Pascal 2019
The impact of electron-capture (EC) cross sections on neutron-rich nuclei on the dynamics of core-collapse during infall and early post-bounce is studied performing spherically symmetric simulations in general relativity using a multigroup scheme for neutrino transport and full nuclear distributions in extended nuclear statistical equilibrium models. We thereby vary the prescription for EC rates on individual nuclei, the nuclear interaction for the EoS, the mass model for the nuclear statistical equilibrium distribution and the progenitor model. In agreement with previous works, we show that the individual EC rates are the most important source of uncertainty in the simulations, while the other inputs only marginally influence the results. A recently proposed analytic formula to extrapolate microscopic results on stable nuclei for EC rates to the neutron rich region, with a functional form motivated by nuclear-structure data and parameters fitted from large scale shell model calculations, is shown to lead to a sizable (16%) reduction of the electron fraction at bounce compared to more primitive prescriptions for the rates, leading to smaller inner core masses and slower shock propagation. We show that the EC process involves $approx$ 130 different nuclear species around 86 Kr mainly in the N = 50 shell closure region, and establish a list of the most important nuclei to be studied in order to constrain the global rates.
The astrophysical site of the r-process is still uncertain, and a full exploration of the systematics of this process in terms of its dependence on nuclear properties from stability to the neutron drip-line within realistic stellar environments has s till to be undertaken. Sufficiently high neutron to seed ratios can only be obtained either in very neutron-rich low-entropy environments or moderately neutron-rich high-entropy environments, related to neutron star mergers (or jets of neutron star matter) and the high-entropy wind of core-collapse supernova explosions. As chemical evolution models seem to disfavor neutron star mergers, we focus here on high-entropy environments characterized by entropy $S$, electron abundance $Y_e$ and expansion velocity $V_{exp}$. We investigate the termination point of charged-particle reactions, and we define a maximum entropy $S_{final}$ for a given $V_{exp}$ and $Y_e$, beyond which the seed production of heavy elements fails due to the very small matter density. We then investigate whether an r-process subsequent to the charged-particle freeze-out can in principle be understood on the basis of the classical approach, which assumes a chemical equilibrium between neutron captures and photodisintegrations, possibly followed by a $beta$-flow equilibrium. In particular, we illustrate how long such a chemical equilibrium approximation holds, how the freeze-out from such conditions affects the abundance pattern, and which role the late capture of neutrons originating from $beta$-delayed neutron emission can play.
187 - Stephen J. Smartt 2009
Knowledge of the progenitors of core-collapse supernovae is a fundamental component in understanding the explosions. The recent progress in finding such stars is reviewed. The minimum initial mass that can produce a supernova has converged to 8 +/- 1 solar masses, from direct detections of red supergiant progenitors of II-P SNe and the most massive white dwarf progenitors, although this value is model dependent. It appears that most type Ibc supernovae arise from moderate mass interacting binaries. The highly energetic, broad-lined Ic supernovae are likely produced by massive, Wolf-Rayet progenitors. There is some evidence to suggest that the majority of massive stars above ~20 solar masses may collapse quietly to black-holes and that the explosions remain undetected. The recent discovery of a class of ultra-bright type II supernovae and the direct detection of some progenitor stars bearing luminous blue variable characteristics suggests some very massive stars do produce highly energetic explosions. The physical mechanism is open to debate and these SNe pose a challenge to stellar evolutionary theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا