ﻻ يوجد ملخص باللغة العربية
INTEGRAL regularly scans the Galactic plane to search for new objects and in particular for absorbed sources with the bulk of their emission above 10-20 keV. The first new INTEGRAL source was discovered on 2003 January 29, 0.5 degree from the Galactic plane and was further observed in the X-rays with XMM-Newton. This source, IGR J16318-4848, is intrinsically strongly absorbed by cold matter and displays exceptionally strong fluorescence emission lines. The likely infrared/optical counterpart indicates that IGR J16318-4848 is probably a High Mass X-Ray Binary neutron star or black hole enshrouded in a Compton thick environment. Strongly absorbed sources, not detected in previous surveys, could contribute significantly to the Galactic hard X-ray background between 10 and 200 keV.
We report a Hitomi observation of IGR J16318-4848, a high-mass X-ray binary system with an extremely strong absorption of N_H~10^{24} cm^{-2}. Previous X-ray studies revealed that its spectrum is dominated by strong fluorescence lines of Fe as well a
A new class of X-ray binaries has been recently discovered by the high energy observatory, INTEGRAL. It is composed of intrinsically obscured supergiant high mass X-ray binaries, unveiled by means of multi-wavelength X-ray, optical, near- and mid-inf
We present the results of Spitzer mid-infrared spectroscopic observations of two highly-obscured massive X-ray binaries: IGR J16318-4848 and GX301-2. Our observations reveal for the first time the extremely rich mid-infrared environments of this type
IGR J19140+0951 (formerly known as IGR J19140+098) was discovered with the INTEGRAL satellite in March 2003. We report the details of the discovery, using an improved position for the analysis. We have performed a simultaneous study of the 5-100 keV
We report on the discovery of X-ray pulsations in the Be/X-ray binary IGR J21343+4738 during an XMM-Newton observation. We obtained a barycentric corrected pulse period of 320.35+-0.06 seconds. The pulse profile displays a peak at low energy that fla