ﻻ يوجد ملخص باللغة العربية
We report a Hitomi observation of IGR J16318-4848, a high-mass X-ray binary system with an extremely strong absorption of N_H~10^{24} cm^{-2}. Previous X-ray studies revealed that its spectrum is dominated by strong fluorescence lines of Fe as well as continuum emission. For physical and geometrical insight into the nature of the reprocessing material, we utilize the high spectroscopic resolving power of the X-ray microcalorimeter (the soft X-ray spectrometer; SXS) and the wide-band sensitivity by the soft and hard X-ray imager (SXI and HXI) aboard Hitomi. Even though photon counts are limited due to unintended off-axis pointing, the SXS spectrum resolves Fe K{alpha_1} and K{alpha_2} lines and puts strong constraints on the line centroid and width. The line width corresponds to the velocity of 160^{+300}_{-70} km s^{-1}. This represents the most accurate, and smallest, width measurement of this line made so far from any X-ray binary, much less than the Doppler broadening and shift expected from speeds which are characteristic of similar systems. Combined with the K-shell edge energy measured by the SXI and HXI spectra, the ionization state of Fe is estimated to be in the range of Fe I--IV. Considering the estimated ionization parameter and the distance between the X-ray source and the absorber, the density and thickness of the materials are estimated. The extraordinarily strong absorption and the absence of a Compton shoulder component is confirmed. These characteristics suggest reprocessing materials which are distributed in a narrow solid angle or scattering primarily with warm free electrons or neutral hydrogen.
INTEGRAL regularly scans the Galactic plane to search for new objects and in particular for absorbed sources with the bulk of their emission above 10-20 keV. The first new INTEGRAL source was discovered on 2003 January 29, 0.5 degree from the Galacti
A new class of X-ray binaries has been recently discovered by the high energy observatory, INTEGRAL. It is composed of intrinsically obscured supergiant high mass X-ray binaries, unveiled by means of multi-wavelength X-ray, optical, near- and mid-inf
We present the results of Spitzer mid-infrared spectroscopic observations of two highly-obscured massive X-ray binaries: IGR J16318-4848 and GX301-2. Our observations reveal for the first time the extremely rich mid-infrared environments of this type
INTEGRAL played a key role in discovering obscured sgHMXB in the Galaxy. We used XMM-Newton to perform X-ray wind tomography of a specific of these systems, IGR J17252-3616, featuring eclipses of the accreting pulsar. The X-ray band (0.2-10 keV) reve
The INTEGRAL satellite has revealed a previously hidden population of absorbed high-mass X-ray binaries (HMXBs) hosting supergiant (SG) stars. Among them, IGR J16320-4751 is a classical system intrinsically obscured by its environment, with a column