ﻻ يوجد ملخص باللغة العربية
We present spectra of the optical transient of GRB021004 obtained with the Hobby-Eberly telescope starting 15.48, 20.31 hours, and 4.84 days after the burst and a spectrum obtained with the H. J. Smith 2.7 m Telescope starting 14.31 hours after the burst. GRB021004 is the first afterglow whose spectrum is dominated by absorption lines from high ionization species with multiple velocity components separated by up to 3000 km/s. We argue that these lines are likely to come from shells around a massive progenitor star. The high velocities and high ionizations arise from a combination of acceleration and flash-ionization by the burst photons and the wind velocity and steady ionization by the progenitor. We also analyze the broad-band spectrum and the light curve. We distinguish six components along the line of sight: (1) The z~2.293 absorption lines arise from the wind of a massive star. For a mass loss rate of ~6 x 10^{-5} solar masses per year, this component also provides the external medium to create the afterglow light. (2) A second shell produces absorption lines with a relative velocity of 560 km/s, and this is associated with the shell created by the fast massive star wind blowing a bubble in the preceding slow wind at a radial distance of order 10 pc. (3) More distant clouds within the host galaxy lie between 30-2500 pc, where they have been ionized by the burst. (4-6) The massive star wind has clumps with radii and over-densities of 0.022, 0.063, and 0.12 parsecs and 50%, 10%, and 10% respectively. The immediate progenitor of the burster could either be a WC-type Wolf-Rayet star or a highly evolved star whose original mass was just too small for it to become a WN-type Wolf-Rayet star.
We present spectra of the afterglow of GRB 021004 taken with WHT ISIS and VLT FORS1 at three epochs spanning 0.49--6.62 days after the burst. We observe strong absorption likely coming from the host galaxy, alongside absorption in HI, SiIV and CIV wi
We present U,B,V,R_C,and I_C photometry of the optical afterglow of the gamma-ray burst GRB 021004 taken at the Nordic Optical Telescope between approximately eight hours and 30 days after the burst. This data is combined with an analysis of the 87 k
High resolution spectroscopy of GRB 021004 revealed a wealth of absorption lines from several intermediate ionization species. The velocity structure of the absorber is complex and material with velocity up to >3000 km/s is observed. Since only the b
We present polarimetric observations of the afterglow of gamma-ray burst (GRB) 021004, obtained with the Nordic Optical Telescope (NOT) and the Very Large Telescope (VLT) between 8 and 17 hours after the burst. Comparison among the observations shows
WeBo 1 (PN G135.6+01.0), a previously unrecognized planetary nebula with a remarkable thin-ring morphology, was discovered serendipitously on Digitized Sky Survey images. The central star is found to be a late-type giant with overabundances of carbon