ﻻ يوجد ملخص باللغة العربية
We present U,B,V,R_C,and I_C photometry of the optical afterglow of the gamma-ray burst GRB 021004 taken at the Nordic Optical Telescope between approximately eight hours and 30 days after the burst. This data is combined with an analysis of the 87 ksec Chandra X-ray observations of GRB 021004 taken at a mean epoch of 33 hours after the burst to investigate the nature of this GRB. We find an intrinsic spectral slope at optical wavelengths of beta_UH = 0.39 +/- 0.12 and an X-ray slope of beta_X = 0.94 +/- 0.03. There is no evidence for colour evolution between 8.5 hours and 5.5 days after the burst. The optical decay becomes steeper approximately five days after the burst. This appears to be a gradual break due to the onset of sideways expansion in a collimated outflow. Our data suggest that the extra-galactic extinction along the line of sight to the burst is between A_V = 0.3 and A_V = 0.5 and has an extinction law similar to that of the Small Magellanic Cloud. The optical and X-ray data are consistent with a relativistic fireball with the shocked electrons being in the slow cooling regime and having an electron index of p = 1.9 +/- 0.1. The burst occurred in an ambient medium that is homogeneous on scales larger than approximately 10e18 cm but inhomogeneous on smaller scales. The mean particle density is similar to what is seen for other bursts (0.1 < n < 100 cm^{-3}). Our results support the idea that the brightening seen approximately 0.1 days was due to interaction with a clumpy ambient medium within 10^{17} and 10^{18} cm of the progenitor. The agreement between the predicted optical decay and that observed approximately ten minutes after the burst suggests that the physical mechanism controlling the observed flux approximately ten minutes is the same as the one operating at t > 0.5 days.
We present polarimetric observations of the afterglow of gamma-ray burst (GRB) 021004, obtained with the Nordic Optical Telescope (NOT) and the Very Large Telescope (VLT) between 8 and 17 hours after the burst. Comparison among the observations shows
The CCD magnitudes in Johnson $B,V$ and Cousins $R$ and $I$ photometric passbands are determined for the bright long duration GRB 021004 afterglow from 2002 October 4 to 16 starting $sim$ 3 hours after the $gamma-$ray burst. Light curves of the after
We present an analysis of BVRcIc observations of the field sized around 4 x 4 centered at the host galaxy of the gamma-ray burst GRB 021004 with the 6-m BTA telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. We mea
We report UBVRI observations of the optical afterglow of the gamma-ray burst GRB 021004. We observed significant (10-20%) deviations from a power law decay on several time scales, ranging from a few hours down to 20-30 minutes. We also observed a sig
We present spectra of the optical transient of GRB021004 obtained with the Hobby-Eberly telescope starting 15.48, 20.31 hours, and 4.84 days after the burst and a spectrum obtained with the H. J. Smith 2.7 m Telescope starting 14.31 hours after the b