ﻻ يوجد ملخص باللغة العربية
RX J1914.4+2456 and RX J0806.3+1527 have been proposed as double degenerate binaries with orbital periods of 569s and 321s respectively. An alternative model, in which the periods are related to the spin of a magnetic white dwarf in an intermediate polar system, has been rejected by other authors. We show that a face-on, stream-fed intermediate polar model for the two systems is viable and preferable to the other models. In each case, the X-ray modulation periods then represent the rotation of the white dwarf in the binary reference frame. The model explains the fully modulated X-ray pulse profiles, the X-ray spectra, the antiphase between X-ray and optical/infrared modulation, the lack of longer period modulation, and the low level of polarization. The optical spectrum of RX J0806.3+1527 suggests that Balmer series lines are present, blended with HeII lines. This is unlike the spectra of any of the known AM CVn stars and suggests that the system is not a double degenerate binary. The optical spectrum of RX J1914.4+2456 has spectral features that are consistent with those of a K star, ruling out the double degenerate models in this case. The lack of optical/infrared emission lines in RX J1914.4+2456 may be attributed to a high mass accretion rate and its face-on orientation. Its reported period decrease may be a short term spin-up episode driven by the current high M-dot. Finally we suggest that there is an observational selection effect such that the face-on intermediate polars that are detected will all have a stream-fed component, and the purely stream-fed intermediate polars that are detected will all be face-on systems.
We present imaging circular polarimetry and near-infrared photometry of the suspected ultra-short period white-dwarf binary RX J0806.3+1527 obtained with the ESO VLT and discuss the implications for a possible magnetic nature of the white dwarf accre
We report results on the ROSAT-discovered noneclipsing short-period polars RX J0154.0-5947, RX J0600.5-2709, RX J0859.1+0537, RX J0953.1+1458, and RX J1002.2-1925 collected over 30 years. We present accurate linear orbital ephemerides that allow a co
The system RX J0806.3+1527 (HM Cnc) is a pulsating X-ray source with 100 per cent modulation on a period of 321.5 s (5.4 min). This period reflects the orbital motion of a close binary consisting of two interacting white dwarfs. Here we present a ser
We present the first optical photometry of the counterpart to the candidate intermediate polar RX J0153.3+7446. This reveals an optical pulse period of 2333s +/- 5s. Reanalysis of the previously published ROSAT X-ray data reveals that the true X-ray
We report the first time-resolved photometric and spectroscopic optical observations of the X-ray source RX J2133.7+5107, identified in the ROSAT survey. A clear persistent optical light pulsation is discovered with fast photometry at a period of P_{