ترغب بنشر مسار تعليمي؟ اضغط هنا

RX J2133.7+5107 : Identification of a new long period Intermediate Polar

158   0   0.0 ( 0 )
 نشر من قبل J. M. Bonnet-Bidaud
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first time-resolved photometric and spectroscopic optical observations of the X-ray source RX J2133.7+5107, identified in the ROSAT survey. A clear persistent optical light pulsation is discovered with fast photometry at a period of P_{omega} =(570.823 +/-0.013) s which we associate with the spin period of an accreting white dwarf. Radial velocity curves of the strong emission lines show modulation with a period of P_{Omega} =(7.193 +/- 0.016) hr, identified as the orbital period. These observations establish that the source is a member of the intermediate polar class (IPs) of magnetic cataclysmic variables. With only 4 IPs with longer orbital periods, RX J2133.7+5107 is among the widest systems. It is a unique IP with an orbital period in the middle of the so-called (6-10)hr IP gap and it shows a significant degree of asynchronism with a ratio P_{omega}/P_{Omega} of 0.02. When attributed to the motion of the white dwarf, the emission lines orbital modulation yields a mass function of f_m = (1.05 +/- 0.21) 10^{-2} Msun which, for a probable inclination i < 45 deg and a white dwarf mass M_{wd} = (0.6-1.0) Msun, corresponds to a secondary mass M_{s} > (0.27-0.37) Msun.



قيم البحث

اقرأ أيضاً

We present the first optical photometry of the counterpart to the candidate intermediate polar RX J0153.3+7446. This reveals an optical pulse period of 2333s +/- 5s. Reanalysis of the previously published ROSAT X-ray data reveals that the true X-ray pulse period is probably 1974s +/- 30s, rather than the 1414 s previously reported. Given that the previously noted orbital period of the system is 3.94 h, we are able to identify the X-ray pulse period with the white dwarf spin period and the optical pulse period with the rotation period of the white dwarf in the binary reference frame, as commonly seen in other intermediate polars. We thus confirm that RX J0153.3+7446 is indeed a typical intermediate polar.
58 - Gavin Ramsay 1998
Following the suggestion of Schwope et al that the magnetic cataclysmic variable RX J2115-5840 maybe a near-synchronous polar, we obtained optical polarimetry of this system over a 2 week period. From a power spectrum of the circular polarimetry data we determine that the spin period of the white dwarf and the binary orbital period which differ by 1.2%. RX J2115-5840 is thus the fourth near synchronous polar and has the shortest spin-orbit beat period: 6.3 days. By folding the data on spin, beat and orbital periods we find evidence that the accretion stream is directed towards opposite magnetic poles as the stream precesses around the white dwarf on the spin-orbit beat period. The phasing requires that the accretion flow must be directed onto the same magnetic field line at all spin-orbit beat phases implying that at some phases the flow must follow a path around the white dwarf before accreting. This is difficult to reconcile with simple views of how the accretion stream attaches onto the magnetic field of the white dwarf.
Based on XMM--Newton X-ray observations IGR J19552+0044 appears to be either a pre-polar or an asynchronous polar. We conducted follow-up optical observations to identify the sources and periods of variability precisely and to classify this X-ray sou rce correctly. Extensive multicolor photometric and medium- to high-resolution spectroscopy observations were performed and period search codes were applied to sort out the complex variability of the object. We found firm evidence of discording spectroscopic (81.29+/-0.01m) and photometric (83.599+/-0.002m) periods that we ascribe to the white dwarf (WD) spin period and binary orbital period, respectively. This confirms that IGR J19552+0044 is an asynchronous polar. Wavelength-dependent variability and its continuously changing shape point at a cyclotron emission from a magnetic WD with a relatively low magnetic field below 20 MG. The difference between the WD spin period and the binary orbital period proves that IGR J19552+0044 is a polar with the largest known degree of asynchronism (0.97 or 3%).
191 - Michele Trabucchi 2017
Period-luminosity (PL) sequences of long period variables (LPVs) are commonly interpreted as different pulsation modes, but there is disagreement on the modal assignment. Here, we re-examine the observed PL sequences in the Large Magellanic Cloud, in cluding the sequence of long secondary periods (LSPs), and their associated pulsation modes. Firstly, we theoretically model the sequences using linear, radial, non-adiabatic pulsation models and a population synthesis model of the LMC red giants. Then, we use a semi-empirical approach to assign modes to the pulsation sequences by exploiting observed multi-mode pulsators. As a result of the combined approaches, we consistently find that sequences B and C$^{prime}$ both correspond to first overtone pulsation, although there are some fundamental mode pulsators at low luminosities on both sequences. The masses of these fundamental mode pulsators are larger at a given luminosity than the mass of the first overtone pulsators. These two sequences B and C$^{prime}$ are separated by a small period interval in which large amplitude pulsation in a long secondary period (sequence D variability) occurs, meaning that the first overtone pulsation is not seen as the primary mode of pulsation. Observationally, this leads to the splitting of the first overtone pulsation sequence into the two observed sequences B and C$^{prime}$. Our two independent examinations also show that sequences A$^{prime}$, A and C correspond to third overtone, second overtone and fundamental mode pulsation, respectively.
We present the results of a photometric and spectroscopic analysis of the Galactic Bulge Survey X-ray source CXOGBS J174954.5-294335 (hereafter, referred to as CX19). CX19 is a long period, eclipsing intermediate polar type cataclysmic variable with broad, single-peaked Balmer and Paschen emission lines along with HeII $lambda4686$ and Bowen blend emission features. With coverage of one full and two partial eclipses and archival photometry, we determine the ephemeris for CX19 to be HJD(eclipse) = 2455691.8581(5) + 0.358704(2)$times$N. We also recovered the white dwarf spin period of P$_{rm spin}$ = 503.32(3) seconds which gives a P$_{rm spin}$/P$_{rm orb}$ = 0.016(6), comparable to several confirmed, long period intermediate polars. CX19 also shows a clear X-ray eclipse in the 0.3-8.0 keV range observed with Chandra. Two optical outbursts were observed lasting between 6-8 hours (lower limits) reaching $sim$1.3 mags in amplitude. The outbursts, both in duration and magnitude, the accretion disc dominated spectra and hard X-ray emission are reminiscent of the intermediate polar V1223 Sgr sharing many of the same characteristics. If we assume a main sequence companion, we estimate the donor to be an early G-type star and find a minimum distance of $d approx$ 2.1 kpc and a 0.5-10.0 keV X-ray luminosity upper limit of 2.0 $times$ 10$^{33}$ erg s$^{-1}$. Such an X-ray luminosity is consistent with a white dwarf accretor in a magnetic cataclysmic variable system. To date, CX19 is only the second deeply-eclipsing intermediate polar with X-ray eclipses and the first which is optically accessible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا