ﻻ يوجد ملخص باللغة العربية
We compute the bispectrum of the 2dF Galaxy Redshift Survey (2dFGRS) and use it to measure the bias parameter of the galaxies. This parameter quantifies the strength of clustering of the galaxies relative to the mass in the Universe. By analysing 80 million triangle configurations in the wavenumber range 0.1 < k < 0.5 h/Mpc (i.e. on scales roughly between 5 and 30 Mpc/h) we find that the linear bias parameter is consistent with unity: b_1=1.04 pm 0.11, and the quadratic (nonlinear) bias is consistent with zero: b_2=-0.054 pm 0.08. Thus, at least on large scales, optically-selected galaxies do indeed trace the underlying mass distribution. The bias parameter can be combined with the 2dFGRS measurement of the redshift distortion parameter beta = Omega_m^{0.6}/b_1, to yield Omega_m = 0.27 pm 0.06 for the matter density of the Universe, a result which is determined entirely from this survey, independently of other datasets. Our measurement of the matter density of the Universe should be interpreted as Omega_m at the effective redshift of the survey (z=0.17).
We present a detailed analysis of the two-point correlation function, from the 2dF Galaxy Redshift Survey (2dFGRS). We estimate the redshift-space correlation function, xi(s), from which we measure the redshift-space clustering length, s_0=6.82+/-0.2
The 2dF Galaxy Redshift Survey has now measured in excess of 160000 galaxy redshifts. This paper presents the power spectrum of the galaxy distribution, calculated using a direct FFT-based technique. We argue that, within the k-space region 0.02<k<0.
We have determined the composite luminosity function (LF) for galaxies in 60 clusters from the 2dF Galaxy Redshift Survey. The LF spans the range $-22.5<M_{b_{rm J}}<-15$, and is well-fitted by a Schechter function with ${M_{b_{rm J}}}^{*}=-20.07pm0.
The clustering properties of local, S_{1.4 GHz} > 1 mJy, radio sources are investigated for a sample of 820 objects drawn from the joint use of the FIRST and 2dF Galaxy Redshift surveys. To this aim, we present 271 new bj < 19.45 spectroscopic counte
We measure the clustering of galaxy groups in the 2dFGRS Percolation-Inferred Galaxy Group (2PIGG) catalogue. The 2PIGG sample has 29,000 groups with at least two members. The clustering amplitude of the full 2PIGG catalogue is weaker than that of 2d