ﻻ يوجد ملخص باللغة العربية
The 2dF Galaxy Redshift Survey has now measured in excess of 160000 galaxy redshifts. This paper presents the power spectrum of the galaxy distribution, calculated using a direct FFT-based technique. We argue that, within the k-space region 0.02<k<0.15 h Mpc^-1, the shape of this spectrum should be close to that of the linear density perturbations convolved with the window function of the survey. This window function and its convolving effect on the power spectrum estimate are analyzed in detail. By convolving model spectra, we are able to fit the power-spectrum data and provide a measure of the matter content of the universe. Our results show that models containing baryon oscillations are mildly preferred over featureless power spectra. Analysis of the data yields 68% confidence limits on the total matter density times the Hubble parameter Omega_m h = 0.20 +/- 0.03, and the baryon fraction Omega_b/Omega_m = 0.15 +/- 0.07, assuming scale-invariant primordial fluctuations.
We present a power spectrum analysis of the final 2dF QSO Redshift Survey catalogue containing 22652 QSOs. Utilising the huge volume probed by the QSOs, we can accurately measure power out to scales of ~500Mpc and derive new constraints, at z~1.4, on
We present a power spectrum analysis of the final 2dF Galaxy Redshift Survey, employing a direct Fourier method. The sample used comprises 221,414 galaxies with measured redshifts. We investigate in detail the modelling of the sample selection. A new
We present a detailed analysis of the two-point correlation function, from the 2dF Galaxy Redshift Survey (2dFGRS). We estimate the redshift-space correlation function, xi(s), from which we measure the redshift-space clustering length, s_0=6.82+/-0.2
We compute the bispectrum of the 2dF Galaxy Redshift Survey (2dFGRS) and use it to measure the bias parameter of the galaxies. This parameter quantifies the strength of clustering of the galaxies relative to the mass in the Universe. By analysing 80
We measure the clustering of galaxy groups in the 2dFGRS Percolation-Inferred Galaxy Group (2PIGG) catalogue. The 2PIGG sample has 29,000 groups with at least two members. The clustering amplitude of the full 2PIGG catalogue is weaker than that of 2d