ﻻ يوجد ملخص باللغة العربية
We present a long-term multi-wavelength light curve of Galactic black hole candidate GRS 1758-258 by combining previously published and archival data from GRANAT, ROSAT, CGRO, RXTE, SAX, ASCA, EXOSAT, and the VLA. In addition we include first spectral results from the balloon-borne Gamma-ray Arcminute Telescope Imaging System (GRATIS). In light of divergent analyses of the 1991-1993 ROSAT observations, we have re-analyzed these data; we find the soft X-rays track the hard X-rays, and that the fits require no black-body component-- indicating that GRS 1758-258 did not go to the high state in 1993. We offer an interpretation based on the ADAF model for a system with mdot ltsim mdot_crit. We find the 1990-1993 coeval hard and soft X-ray observations support the ADAF predictions. We discuss a new way to constrain black-hole mass with spectral data and the ADAF theory, and apply this technique to GRS 1758-258 to find M_1 gtsim 8--9 M_sol at an assumed distance of 8.5 kpc. Further investigations of the ADAF model allow us to evaluate the model critically against the data and flux-flux diagram of Barret, McClintock & Grindlay (1996) and to understand the limits of the latters ``X-ray burster box.
The results of GRANAT/SIGMA hard X-ray observations of GRS 1758-258 in 1990-1998 are presented. The source lies at ~5arcdeg from the Galactic Center and was within the SIGMA field of view during the GRANAT surveys of this region. The total exposure t
The family links between radio galaxies and microquasars have been strongly strengthened thanks to a new common phenomenon: the presence of extended winged features. The first detection of such structures in a Galactic microquasar, recently reported
We report the results of a deep search for the optical and near infrared counterpart of the microquasar source GRS1758-258. At least two possible candidate counterparts of the binary star companion have been recognized on the basis of astrometric coi
Context. Understood to be a microquasar in the Galactic center region, GRS 1758-258 has not yet been unambiguously identified to have an optical/near-infrared counterpart, mainly because of the high absorption and the historic lack of suitable astrom
We present deep infrared ($2.2 mu$m) imaging of the Galactic microquasars 1E1740-2942 and GRS 1758-258 using the Keck-I 10-meter telescope in June 1998. The observations were taken under excellent seeing conditions ($sim 0.45 arcsec$ full-width half-