ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for the optical and infrared counterpart of GRS 1758-258

88   0   0.0 ( 0 )
 نشر من قبل Paolo Goldoni
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Marti




اسأل ChatGPT حول البحث

We report the results of a deep search for the optical and near infrared counterpart of the microquasar source GRS1758-258. At least two possible candidate counterparts of the binary star companion have been recognized on the basis of astrometric coincidence to within 1. Our photometric study shows that the brightest of them would be consistent with a K-type giant star, while the weakest one would be a main sequence F companion. Follow up spectroscopic observations in the near infrared H and K-bands have failed so far to provide evidence for emission lines that may support an unambiguous identification. However, the proximity of these two sources to the sub-arcsec VLA radio position of GRS 1758-258 makes them deserving further attention in the future.



قيم البحث

اقرأ أيضاً

Context. Understood to be a microquasar in the Galactic center region, GRS 1758-258 has not yet been unambiguously identified to have an optical/near-infrared counterpart, mainly because of the high absorption and the historic lack of suitable astrom etric stars, which led to the use of secondary astrometric solutions. Although it is considered with 1E 1740.7-2942 as the prototypical microquasar in the Galactic center region, the Galactic origin of both sources has not yet been confirmed. Aims. We attempt to improve previous astrometry to identify a candidate counterpart to GRS 1758-258. We present observations with the Gran Telescopio de Canarias (GTC), in which we try to detect any powerful emission lines that would infer an extragalactic origin of this source. Methods. We use modern star catalogues to reanalyze archival images of the GRS 1758-258 field in the optical and near-infrared wavelengths, and compute a new astrometric solution. We also reanalyzed archival radio data of GRS 1758-258 to determine a new and more accurate radio position. Results. Our improved astrometric solution for the GRS 1758-258 field represents a significant advancement on previous works and allows us to identify a single optical/near-infrared source, which we propose as the counterpart of GRS 1758-258. The GTC spectrum of this source is however of low signal-to-noise ratio and does not rule out a Galactic origin. Hence, new spectral observations are required to confirm or discard a Galactic nature.
We present deep infrared ($2.2 mu$m) imaging of the Galactic microquasars 1E1740-2942 and GRS 1758-258 using the Keck-I 10-meter telescope in June 1998. The observations were taken under excellent seeing conditions ($sim 0.45 arcsec$ full-width half- maximum), making them exceptionally deep for these crowded fields. We used the USNO-A2.0 catalog to astrometrically calibrate the infrared images (along with an optical CCD image in the case of GRS 1758-258), providing independent frame ties to the known radio positions of the objects. For 1E1740-2942, we confirm potential candidates for the microquasar previously identified by Marti et al., and show that none of the objects near the microquasar have varied significantly from 1998 to 1999. For GRS 1758-258, our astrometry indicates a position shifted from previous reports of candidates for the microquasar. We find no candidates inside our 90% confidence radius to a $2 sigma$ limiting magnitude of $K_s = 20.3$ mag. We discuss the implications of these results for the nature of the microquasar binary systems.
The family links between radio galaxies and microquasars have been strongly strengthened thanks to a new common phenomenon: the presence of extended winged features. The first detection of such structures in a Galactic microquasar, recently reported in Nature Communications (http://rdcu.be/zgX8), widens the already known analogy between both kinds of outflow sources (Marti et al. 2017). This observational result also has potential implications affecting the black hole merger scenarios that contribute to the gravitational wave background.
326 - A. Goldwurm 2001
The XMM-Newton X-ray observatory pointed the galactic black hole candidate and microquasar GRS 1758-258 in September 2000 for about 10 ks during a program devoted to the scan of the Galactic Center regions. Preliminary results from EPIC MOS camera da ta are presented here. The data indicate that the source underwent a state transition from its standard low-hard state to an intermediate state. For the first time in this source the ultra-soft component of the accretion disk, which black hole binaries display in intermediate or high-soft states, was clearly detected and measured thanks to the high spectral capabilities of XMM-Newton.
176 - John W. Keck 2001
We present a long-term multi-wavelength light curve of Galactic black hole candidate GRS 1758-258 by combining previously published and archival data from GRANAT, ROSAT, CGRO, RXTE, SAX, ASCA, EXOSAT, and the VLA. In addition we include first spectra l results from the balloon-borne Gamma-ray Arcminute Telescope Imaging System (GRATIS). In light of divergent analyses of the 1991-1993 ROSAT observations, we have re-analyzed these data; we find the soft X-rays track the hard X-rays, and that the fits require no black-body component-- indicating that GRS 1758-258 did not go to the high state in 1993. We offer an interpretation based on the ADAF model for a system with mdot ltsim mdot_crit. We find the 1990-1993 coeval hard and soft X-ray observations support the ADAF predictions. We discuss a new way to constrain black-hole mass with spectral data and the ADAF theory, and apply this technique to GRS 1758-258 to find M_1 gtsim 8--9 M_sol at an assumed distance of 8.5 kpc. Further investigations of the ADAF model allow us to evaluate the model critically against the data and flux-flux diagram of Barret, McClintock & Grindlay (1996) and to understand the limits of the latters ``X-ray burster box.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا