ﻻ يوجد ملخص باللغة العربية
Due to the foreground extinction of the Milky Way, galaxies appear increasingly fainter the closer they lie to the Galactic Equator, creating a zone of avoidance of about 25% in the distribution of optically visible galaxies. A whole-sky map of galaxies is essential, however, for understanding the dynamics in our local Universe, in particular the peculiar velocity of the Local Group with respect to the Cosmic Microwave Background and velocity flow fields such as in the Great Attractor region. Various dynamically important structures behind the Milky Way have only recently been made ``visible through dedicated deep surveys at various wavelengths. The wide range of observational searches (optical, near infrared, far infrared, radio and X-ray) for galaxies in the Zone of Avoidance are reviewed, including a discussion on the limitations and selection effects of these partly complementary approaches. The uncovered and suspected large-scale structures are summarized. Reconstruction methods of the density field in the Zone of Avoidance are described and the resulting predictions compared with observational evidence. The comparison between reconstructed density fields and the observed galaxy distribution allow derivations of the density and biasing parameters Omega_0 and b.
A first analysis of a deep blind HI survey covering the southern Zone of Avoidance plus an extension towards the north (196 < l < 52 deg) obtained with the Multibeam receiver at the 64m Parkes telescope reveals slightly over a thousand galaxies withi
Dust and stars in the plane of the Milky Way create a Zone of Avoidance in the extragalactic sky. Galaxies are distributed in gigantic labyrinth formations, filaments and great walls with occasional dense clusters. They can be traced all over the sky
Current studies of the peculiar velocity flow field in the Local Universe are limited by the lack of detection of galaxies behind the Milky Way. The contribution of the largely unknown mass distribution in this Zone of Avoidance (ZoA) to the dynamics
About 25% of the optical extragalactic sky is obscured by the dust and stars of our Milky Way. Dynamically important structures might still lie hidden in this zone. Various approaches are presently being employed to uncover the galaxy distribution in
Our Galaxy blocks a significant portion of the extragalactic sky from view, hampering studies of large-scale structure. This produces an incomplete knowledge of the distribution of galaxies, and, assuming galaxies trace mass, of the gravity field. Fu