ﻻ يوجد ملخص باللغة العربية
Current studies of the peculiar velocity flow field in the Local Universe are limited by the lack of detection of galaxies behind the Milky Way. The contribution of the largely unknown mass distribution in this Zone of Avoidance (ZoA) to the dynamics of the Local group remains contraversial. We have undertaken a near infrared (NIR) survey of HI detected galaxies in the ZoA. The photomety derived here will be used in the NIR Tully-Fisher (TF) relation to derive the peculiar velocities of this sample of galaxies in the ZoA.
As part of our programme to map the large-scale distribution of galaxies behind the southern Milky Way, we observed 314 optically-selected, partially-obscured galaxies in the Zone of Avoidance (ZOA) in the Crux and Great Attractor (GA) regions. The o
Dust and stars in the plane of the Milky Way create a Zone of Avoidance in the extragalactic sky. Galaxies are distributed in gigantic labyrinth formations, filaments and great walls with occasional dense clusters. They can be traced all over the sky
About 25% of the optical extragalactic sky is obscured by the dust and stars of our Milky Way. Dynamically important structures might still lie hidden in this zone. Various approaches are presently being employed to uncover the galaxy distribution in
Due to the foreground extinction of the Milky Way, galaxies appear increasingly fainter the closer they lie to the Galactic Equator, creating a zone of avoidance of about 25% in the distribution of optically visible galaxies. A whole-sky map of galax
Our Galaxy blocks a significant portion of the extragalactic sky from view, hampering studies of large-scale structure. This produces an incomplete knowledge of the distribution of galaxies, and, assuming galaxies trace mass, of the gravity field. Fu