ﻻ يوجد ملخص باللغة العربية
We report on a sensitive survey for radio pulsar wind nebulae (PWN) towards 27 energetic and/or high velocity pulsars. Observations were carried out at 1.4 GHz using the Very Large Array and the Australia Telescope Compact Array, and utilised pulsar-gating to search for off-pulse emission. These observing parameters resulted in a considerably more sensitive search than previous surveys, and could detect PWN over a much wider range of spatial scales (and hence ambient densities and pulsar velocities). However, no emission clearly corresponding to a PWN was discovered. Based on these non-detections we argue that the young and energetic pulsars in our sample have winds typical of young pulsars, but produce unobservable PWN because they reside in low density (n approx 0.003 cm^-3) regions of the ISM. However, non-detections of PWN around older and less energetic pulsars can only be explained if the radio luminosity of their winds is less than 1e-5 of their spin-down luminosity, implying an efficiency at least an order of magnitude smaller than that seen for young pulsars.
We present a complete set of diagnostic tools aimed at reproducing synthetic non-thermal (synchrotron and/or Inverse Compton, IC) emissivity, integrated flux energy, polarization and spectral index simulated maps in comparison to observations. The ti
The recently detected gamma-ray emission from Starburst galaxies is most commonly considered to be diffuse emission arising from strong interactions of accelerated cosmic rays. Mannheim et al. (2012), however, have argued that a population of individ
Pulsar wind nebulae (PWNe) are main gamma-ray emitters in the Galactic plane. Although the leptonic scenario is able to explain most PWNe emission well, a hadronic contribution cannot be excluded. High-energy emission raises the possibility that gamm
Pulsar wind nebulae (PWNe) are the main gamma-ray emitters in the Galactic plane. They are diffuse nebulae that emit nonthermal radiation. Pulsar winds, relativistic magnetized outflows from the central star, shocked in the ambient medium produce a m
Particle acceleration is a fundamental process in many high-energy astrophysical environments and determines the spectral features of their synchrotron emission. We have studied the adiabatic stochastic acceleration (ASA) of electrons arising from th