ﻻ يوجد ملخص باللغة العربية
We introduced the quasicentral modulus to study normed ideal perturbations of operators. It is a limit of condenser quasicentral moduli in view of a recently noticed analogy with capacity in nonlinear potential theory. We prove here some basic properties of the condenser quasicentral modulus and compute a simple example. Some of the results are in the more general setting of a semifinite von Neumann algebra.
A Banach space X has the SHAI (surjective homomorphisms are injective) property provided that for every Banach space Y, every continuous surjective algebra homomorphism from the bounded linear operators on X onto the bounded linear operators on Y is
In 2000 V. Lomonosov suggested a counterexample to the complex version of the Bishop-Phelps theorem on modulus support functionals. We discuss the $c_0$-analog of that example and demonstrate that the set of sup-attaining functionals is non-trivial,
Given two complex Banach spaces $X_1$ and $X_2$, a tensor product $X_1tilde{otimes} X_2$ of $X_1$ and $X_2$ in the sense of [14], two complex solvable finite dimensional Lie algebras $L_1$ and $L_2$, and two representations $rho_icolon L_ito {rm L}(X
In this paper, we show that under a mild condition, a principal submodule of the Bergman module on a bounded strongly pseudoconvex domain with smooth boundary in $mathbb{C}^n$ is $p$-essentially normal for all $p>n$. This is a significant improvement
In the spirit of Grothendiecks famous inequality from the theory of Banach spaces, we study a sequence of inequalities for the noncommutative Schwartz space, a Frechet algebra of smooth operators. These hold in non-optimal form by a simple nuclearity argument. We obtain optim