ترغب بنشر مسار تعليمي؟ اضغط هنا

Grothendiecks inequality in the noncommutative Schwartz space

118   0   0.0 ( 0 )
 نشر من قبل Rupert Levene
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the spirit of Grothendiecks famous inequality from the theory of Banach spaces, we study a sequence of inequalities for the noncommutative Schwartz space, a Frechet algebra of smooth operators. These hold in non-optimal form by a simple nuclearity argument. We obtain optim



قيم البحث

اقرأ أيضاً

Tensor product of Fock spaces is analogous to the Hardy space over the unit polydisc. This plays an important role in the development of noncommutative operator theory and function theory in the sense of noncommutative polydomains and noncommutative varieties. In this paper we study joint invariant subspaces of tensor product of full Fock spaces and noncommutative varieties. We also obtain, in particular, by using techniques of noncommutative varieties, a classification of joint invariant subspaces of $n$-fold tensor products of Drury-Arveson spaces.
We survey several significant results on the Bohr inequality and presented its generalizations in some new approaches. These are some Bohr type inequalities of Hilbert space operators related to the matrix order and the Jensen inequality. An eigenval ue extension of Bohrs inequality is discussed as well.
Yuan and Leng (2007) gave a generalization of Ky Fans determinantal inequality, which is a celebrated refinement of the fundamental Brunn-Minkowski inequality $(det (A+B))^{1/n} ge (det A)^{1/n} +(det B)^{1/n}$, where $A$ and $B$ are positive semidef inite matrices. In this note, we first give an extension of Yuan-Lengs result to multiple positive definite matrices, and then we further extend the result to a larger class of matrices whose numerical ranges are contained in a sector. Our result improves a recent result of Liu [Linear Algebra Appl. 508 (2016) 206--213].
304 - Shuaibing Luo 2018
In this paper, we study the reducing subspaces for the multiplication operator by a finite Blaschke product $phi$ on the Dirichlet space $D$. We prove that any two distinct nontrivial minimal reducing subspaces of $M_phi$ are orthogonal. When the ord er $n$ of $phi$ is $2$ or $3$, we show that $M_phi$ is reducible on $D$ if and only if $phi$ is equivalent to $z^n$. When the order of $phi$ is $4$, we determine the reducing subspaces for $M_phi$, and we see that in this case $M_phi$ can be reducible on $D$ when $phi$ is not equivalent to $z^4$. The same phenomenon happens when the order $n$ of $phi$ is not a prime number. Furthermore, we show that $M_phi$ is unitarily equivalent to $M_{z^n} (n > 1)$ on $D$ if and only if $phi = az^n$ for some unimodular constant $a$.
We construct a Chern character map from the K-theory of the reduced C^* algebra of the p-adic GL(n) with values in the periodic cyclic homology of the Schwartz algebra of this group. We prove that this map is an isomorphism after tensoring with C by comparing an explicit formula, stated in the algebraic case by Cuntz and Quillen, with the classical Chern character. This Chern character is a crucial ingredient in the proof of the Baum-Connes conjecture for the p-adic GL(n) due to Baum, Higson and Plymen.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا