ﻻ يوجد ملخص باللغة العربية
In the spirit of Grothendiecks famous inequality from the theory of Banach spaces, we study a sequence of inequalities for the noncommutative Schwartz space, a Frechet algebra of smooth operators. These hold in non-optimal form by a simple nuclearity argument. We obtain optim
Tensor product of Fock spaces is analogous to the Hardy space over the unit polydisc. This plays an important role in the development of noncommutative operator theory and function theory in the sense of noncommutative polydomains and noncommutative
We survey several significant results on the Bohr inequality and presented its generalizations in some new approaches. These are some Bohr type inequalities of Hilbert space operators related to the matrix order and the Jensen inequality. An eigenval
Yuan and Leng (2007) gave a generalization of Ky Fans determinantal inequality, which is a celebrated refinement of the fundamental Brunn-Minkowski inequality $(det (A+B))^{1/n} ge (det A)^{1/n} +(det B)^{1/n}$, where $A$ and $B$ are positive semidef
In this paper, we study the reducing subspaces for the multiplication operator by a finite Blaschke product $phi$ on the Dirichlet space $D$. We prove that any two distinct nontrivial minimal reducing subspaces of $M_phi$ are orthogonal. When the ord
We construct a Chern character map from the K-theory of the reduced C^* algebra of the p-adic GL(n) with values in the periodic cyclic homology of the Schwartz algebra of this group. We prove that this map is an isomorphism after tensoring with C by