ﻻ يوجد ملخص باللغة العربية
Phase change superlattice is one of the emerging material technologies for ultralow-power phase change memories. However, the resistance switching mechanism of phase change superlattice is still hotly debated. Early electrical measurements and recent materials characterizations have suggested that the Kooi phase is very likely to be the as-fabricated low-resistance state. Due to the difficulty in in-situ characterization at atomic resolution, the structure of the electrically switched superlattice in its high-resistance state is still unknown and mainly investigated by theoretical modellings. So far, there has been no simple model that can unify experimental results obtained from device-level electrical measurements and atomic-level materials characterizations. In this work, we carry out atomistic transport modellings of the phase change superlattice device and propose a simple mechanism accounting for its high resistance. The modeled high-resistance state is based on the interfacial phase changed superlattice that has previously been mistaken for the low-resistance state. This work advances the understanding of phase change superlattice for emerging memory applications.
A long-standing question for avant-grade data storage technology concerns the nature of the ultrafast photoinduced phase transformations in the wide class of chalcogenide phase-change materials (PCMs). Overall, a comprehensive understanding of the mi
A theory is developed for interband tunneling in semiconducting carbon nanotube and graphene nanoribbon p-n junction diodes. Characteristic length and energy scales that dictate the tunneling probabilities and currents are evaluated. By comparing the
We propose that the driving force of an ultrafast crystalline-to-amorphous transition in phase-change memory alloys are strained bonds existing in the (metastable) crystalline phase. For the prototypical example of GST, we demonstrate that upon break
We report the fabrication of both n-type and p-type WSe2 field effect transistors with hexagonal boron nitride passivated channels and ionic-liquid (IL)-gated graphene contacts. Our transport measurements reveal intrinsic channel properties including
Materials with formula of A2B2O7 is a famous family with more than 300 compounds, and have abundant properties, like ferroelectric, multiferroic, and photocatalyst properties, etc. Generally, two structures dominate this family, which are pyrochlore