ﻻ يوجد ملخص باللغة العربية
A long-standing question for avant-grade data storage technology concerns the nature of the ultrafast photoinduced phase transformations in the wide class of chalcogenide phase-change materials (PCMs). Overall, a comprehensive understanding of the microstructural evolution and the relevant kinetics mechanisms accompanying the out-of-equilibrium phases is still missing. Here, after overheating a phase-change chalcogenide superlattice by an ultrafast laser pulse, we indirectly track the lattice relaxation by time resolved X-ray absorption spectroscopy (tr-XAS) with a sub-ns time resolution. The novel approach to the tr-XAS experimental results reported in this work provides an atomistic insight of the mechanism that takes place during the cooling process, meanwhile a first-principles model mimicking the microscopic distortions accounts for a straightforward representation of the observed dynamics. Finally, we envisage that our approach can be applied in future studies addressing the role of dynamical structural strain in phase-change materials.
Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at am
We examine the ultrafast optical response of the crystalline and amorphous phases of the phase change material Ge$_2$Sb$_2$Te$_5$ below the phase transformation threshold. Simultaneous measurement of the transmissivity and reflectivity of thin film s
High-speed electrical switching of Ge2Sb2Te5 (GST) remains a challenging task due to the large impedance mismatch between the low-conductivity amorphous state and the high-conductivity crystalline state. In this letter, we demonstrate an effective do
We report the investigation of the generation and detection of GHz coherent acoustic phonons in plasmonic gold nanoparticles superlattices (NPS). The experiments have been performed from an optical femtosecond pump-probe scheme across the optical pla
Phase change superlattice is one of the emerging material technologies for ultralow-power phase change memories. However, the resistance switching mechanism of phase change superlattice is still hotly debated. Early electrical measurements and recent