ترغب بنشر مسار تعليمي؟ اضغط هنا

Storage and Transmission Capacity Requirements of a Remote Solar Power Generation System

199   0   0.0 ( 0 )
 نشر من قبل Yue Chen
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Large solar power stations usually locate in remote areas and connect to the main grid via a long transmission line. Energy storage unit is deployed locally with the solar plant to smooth its output. Capacities of the grid-connection transmission line and the energy storage unit have a significant impact on the utilization rate of solar energy, as well as the investment cost. This paper characterizes the feasible set of capacity parameters under a given solar spillage rate and a fixed investment budget. A linear programming based projection algorithm is proposed to obtain such a feasible set, offering valuable references for system planning and policy making.



قيم البحث

اقرأ أيضاً

In this paper we consider the problem of transmission power allocation for remote estimation of a dynamical system in the case where the estimator is able to simultaneously receive packets from multiple interfering sensors, as it is possible e.g. wit h the latest wireless technologies such as 5G and WiFi. To this end we introduce a general model where packet arrival probabilities are determined based on the received Signal-to-Interference-and-Noise Ratio and with two different receivers design schemes, one implementing standard multi-packet reception technique and one implementing Successive Interference Cancellation decoding algorithm in addition. Then we cast the power allocation problem as an optimization task where the mean error covariance at the remote estimator is minimized, while penalizing the mean transmission power consumption. For the infinite-horizon problem we show the existence of a stationary optimal policy, while for the finite-horizon case we derive some structural properties under the special scenario where the overall system to be estimated can be seen as a set of independent subsystems. Numerical simulations illustrate the improvement given by the proposed receivers over orthogonal schemes that schedules only one sensor transmission at a time in order to avoid interference.
Novel low-power wireless technologies and IoT applications open the door to the Industrial Internet of Things (IIoT). In this new paradigm, Wireless Sensor Networks (WSNs) must fulfil, despite energy and transmission power limitations, the challengin g communication requirements of advanced manufacturing processes and technologies. In industrial networks, this is possible thanks to the availability of network infrastructure and the presence of a network coordinator that efficiently allocates the available radio resources. In this work, we consider a WSN that simultaneously transmits measurements of Networked Control Systems (NCSs) dynamics to remote state estimators over a shared packet-erasure channel. We develop a minimum transmission power control (TPC) policy for the coordination of the wireless medium by formulating an infinite horizon Markov decision process (MDP) optimization problem. We compute the policy using an approximate value iteration algorithm and provide an extensive evaluation of its parameters in different interference scenarios and NCSs dynamics. The evaluation results present a comprehensive characterization of the algorithms performance, proving that it can flexibly adapt to arbitrary use cases.
In this paper, we propose a data-driven energy storage system (ESS)-based method to enhance the online small-signal stability monitoring of power networks with high penetration of intermittent wind power. To accurately estimate inter-area modes that are closely related to the systems inherent stability characteristics, a novel algorithm that leverages on recent advances in wide-area measurement systems (WAMSs) and ESS technologies is developed. It is shown that the proposed approach can smooth the wind power fluctuations in near real-time using a small additional ESS capacity and thus significantly enhance the monitoring of small-signal stability. Dynamic Monte Carlo simulations on the IEEE 68-bus system are used to illustrate the effectiveness of the proposed algorithm in smoothing wind power and estimating the inter-area mode statistical properties.
This paper presents a method to determine the optimal location, energy capacity, and power rating of distributed battery energy storage systems at multiple voltage levels to accomplish grid control and reserve provision. We model operational scenario s at a one-hour resolution, where deviations of stochastic loads and renewable generation (modeled through scenarios) from a day-ahead unit commitment and violations of grid constraints are compensated by either dispatchable power plants (conventional reserves) or injections from battery energy storage systems. By plugging-in costs of conventional reserves and capital costs of converter power ratings and energy storage capacity, the model is able to derive requirements for storage deployment that achieve the technical-economical optimum of the problem. The method leverages an efficient linearized formulation of the grid constraints of both the HV (High Voltage) and MV (Medium Voltage) grids while still retaining fundamental modeling aspects of the power system (such as transmission losses, effect of reactive power, OLTC at the MV/HV interface, unideal efficiency of battery energy storage systems) and models of conventional generator. A proof-of-concept by simulations is provided with the IEEE 9-bus system coupled with the CIGRE benchmark system for MV grids, realistic costs of power reserves, active power rating and energy capacity of batteries, and load and renewable generation profile from real measurements.
Decentralized renewable energy systems can be low-carbon power sources, and promoters of local economies. It is often argued that decentralized generation also helps reducing transmission costs, as generation is closer to the load, thus utilizing the transmission system less. The research presented here addresses the question whether or not, or under what circumstances this effect of avoided transmission can actually be seen for a community-operated cluster of photovoltaic (PV) power plants in two sample locations, one in Germany and one in Japan. For the analysis, the newly developed instrument of MPI-MPE diagrams is used, which plot the maximum power import (MPI) and maximum power export (MPE) in relation to the reference case of no local generation. Results reveal that for moderately sized PV systems without battery storage, avoided transmission can be seen in the Japanese model location, but not in Germany. It was also found that an additional battery storage can lead to avoided transmission in both locations, even for large sizes of installed PV capacity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا