ترغب بنشر مسار تعليمي؟ اضغط هنا

An Unsupervised Deep-Learning Method for Fingerprint Classification: the CCAE Network and the Hybrid Clustering Strategy

340   0   0.0 ( 0 )
 نشر من قبل Chichun Zhou
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The fingerprint classification is an important and effective method to quicken the process and improve the accuracy in the fingerprint matching process. Conventional supervised methods need a large amount of pre-labeled data and thus consume immense human resources. In this paper, we propose a new and efficient unsupervised deep learning method that can extract fingerprint features and classify fingerprint patterns automatically. In this approach, a new model named constraint convolutional auto-encoder (CCAE) is used to extract fingerprint features and a hybrid clustering strategy is applied to obtain the final clusters. A set of experiments in the NIST-DB4 dataset shows that the proposed unsupervised method exhibits the efficient performance on fingerprint classification. For example, the CCAE achieves an accuracy of 97.3% on only 1000 unlabeled fingerprints in the NIST-DB4.



قيم البحث

اقرأ أيضاً

Unsupervised image clustering methods often introduce alternative objectives to indirectly train the model and are subject to faulty predictions and overconfident results. To overcome these challenges, the current research proposes an innovative mode l RUC that is inspired by robust learning. RUCs novelty is at utilizing pseudo-labels of existing image clustering models as a noisy dataset that may include misclassified samples. Its retraining process can revise misaligned knowledge and alleviate the overconfidence problem in predictions. The models flexible structure makes it possible to be used as an add-on module to other clustering methods and helps them achieve better performance on multiple datasets. Extensive experiments show that the proposed model can adjust the model confidence with better calibration and gain additional robustness against adversarial noise.
Joint clustering and feature learning methods have shown remarkable performance in unsupervised representation learning. However, the training schedule alternating between feature clustering and network parameters update leads to unstable learning of visual representations. To overcome this challenge, we propose Online Deep Clustering (ODC) that performs clustering and network update simultaneously rather than alternatingly. Our key insight is that the cluster centroids should evolve steadily in keeping the classifier stably updated. Specifically, we design and maintain two dynamic memory modules, i.e., samples memory to store samples labels and features, and centroids memory for centroids evolution. We break down the abrupt global clustering into steady memory update and batch-wise label re-assignment. The process is integrated into network update iterations. In this way, labels and the network evolve shoulder-to-shoulder rather than alternatingly. Extensive experiments demonstrate that ODC stabilizes the training process and boosts the performance effectively. Code: https://github.com/open-mmlab/OpenSelfSup.
84 - Yao Tang , Fei Gao , Jufu Feng 2017
Minutiae extraction is of critical importance in automated fingerprint recognition. Previous works on rolled/slap fingerprints failed on latent fingerprints due to noisy ridge patterns and complex background noises. In this paper, we propose a new wa y to design deep convolutional network combining domain knowledge and the representation ability of deep learning. In terms of orientation estimation, segmentation, enhancement and minutiae extraction, several typical traditional methods performed well on rolled/slap fingerprints are transformed into convolutional manners and integrated as an unified plain network. We demonstrate that this pipeline is equivalent to a shallow network with fixed weights. The network is then expanded to enhance its representation ability and the weights are released to learn complex background variance from data, while preserving end-to-end differentiability. Experimental results on NIST SD27 latent database and FVC 2004 slap database demonstrate that the proposed algorithm outperforms the state-of-the-art minutiae extraction algorithms. Code is made publicly available at: https://github.com/felixTY/FingerNet.
Clustering is a class of unsupervised learning methods that has been extensively applied and studied in computer vision. Little work has been done to adapt it to the end-to-end training of visual features on large scale datasets. In this work, we pre sent DeepCluster, a clustering method that jointly learns the parameters of a neural network and the cluster assignments of the resulting features. DeepCluster iteratively groups the features with a standard clustering algorithm, k-means, and uses the subsequent assignments as supervision to update the weights of the network. We apply DeepCluster to the unsupervised training of convolutional neural networks on large datasets like ImageNet and YFCC100M. The resulting model outperforms the current state of the art by a significant margin on all the standard benchmarks.
emph{Objective and Impact Statement}. With the renaissance of deep learning, automatic diagnostic systems for computed tomography (CT) have achieved many successful applications. However, they are mostly attributed to careful expert annotations, whic h are often scarce in practice. This drives our interest to the unsupervised representation learning. emph{Introduction}. Recent studies have shown that self-supervised learning is an effective approach for learning representations, but most of them rely on the empirical design of transformations and pretext tasks. emph{Methods}. To avoid the subjectivity associated with these methods, we propose the MVCNet, a novel unsupervised three dimensional (3D) representation learning method working in a transformation-free manner. We view each 3D lesion from different orientations to collect multiple two dimensional (2D) views. Then, an embedding function is learned by minimizing a contrastive loss so that the 2D views of the same 3D lesion are aggregated, and the 2D views of different lesions are separated. We evaluate the representations by training a simple classification head upon the embedding layer. emph{Results}. Experimental results show that MVCNet achieves state-of-the-art accuracies on the LIDC-IDRI (89.55%), LNDb (77.69%) and TianChi (79.96%) datasets for emph{unsupervised representation learning}. When fine-tuned on 10% of the labeled data, the accuracies are comparable to the supervised learning model (89.46% vs. 85.03%, 73.85% vs. 73.44%, 83.56% vs. 83.34% on the three datasets, respectively). emph{Conclusion}. Results indicate the superiority of MVCNet in emph{learning representations with limited annotations}.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا