ترغب بنشر مسار تعليمي؟ اضغط هنا

MVCNet: Multiview Contrastive Network for Unsupervised Representation Learning for 3D CT Lesions

166   0   0.0 ( 0 )
 نشر من قبل Jinpeng Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

emph{Objective and Impact Statement}. With the renaissance of deep learning, automatic diagnostic systems for computed tomography (CT) have achieved many successful applications. However, they are mostly attributed to careful expert annotations, which are often scarce in practice. This drives our interest to the unsupervised representation learning. emph{Introduction}. Recent studies have shown that self-supervised learning is an effective approach for learning representations, but most of them rely on the empirical design of transformations and pretext tasks. emph{Methods}. To avoid the subjectivity associated with these methods, we propose the MVCNet, a novel unsupervised three dimensional (3D) representation learning method working in a transformation-free manner. We view each 3D lesion from different orientations to collect multiple two dimensional (2D) views. Then, an embedding function is learned by minimizing a contrastive loss so that the 2D views of the same 3D lesion are aggregated, and the 2D views of different lesions are separated. We evaluate the representations by training a simple classification head upon the embedding layer. emph{Results}. Experimental results show that MVCNet achieves state-of-the-art accuracies on the LIDC-IDRI (89.55%), LNDb (77.69%) and TianChi (79.96%) datasets for emph{unsupervised representation learning}. When fine-tuned on 10% of the labeled data, the accuracies are comparable to the supervised learning model (89.46% vs. 85.03%, 73.85% vs. 73.44%, 83.56% vs. 83.34% on the three datasets, respectively). emph{Conclusion}. Results indicate the superiority of MVCNet in emph{learning representations with limited annotations}.



قيم البحث

اقرأ أيضاً

199 - Rui Wang , Zuxuan Wu , Zejia Weng 2021
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain. Most existing UDA methods learn domain-invariant feature representations by minimizing feature distance s across domains. In this work, we build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets. Exploring the same set of categories shared by both domains, we introduce a simple yet effective framework CDCL, for domain alignment. In particular, given an anchor image from one domain, we minimize its distances to cross-domain samples from the same class relative to those from different categories. Since target labels are unavailable, we use a clustering-based approach with carefully initialized centers to produce pseudo labels. In addition, we demonstrate that CDCL is a general framework and can be adapted to the data-free setting, where the source data are unavailable during training, with minimal modification. We conduct experiments on two widely used domain adaptation benchmarks, i.e., Office-31 and VisDA-2017, and demonstrate that CDCL achieves state-of-the-art performance on both datasets.
For an image query, unsupervised contrastive learning labels crops of the same image as positives, and other image crops as negatives. Although intuitive, such a native label assignment strategy cannot reveal the underlying semantic similarity betwee n a query and its positives and negatives, and impairs performance, since some negatives are semantically similar to the query or even share the same semantic class as the query. In this work, we first prove that for contrastive learning, inaccurate label assignment heavily impairs its generalization for semantic instance discrimination, while accurate labels benefit its generalization. Inspired by this theory, we propose a novel self-labeling refinement approach for contrastive learning. It improves the label quality via two complementary modules: (i) self-labeling refinery (SLR) to generate accurate labels and (ii) momentum mixup (MM) to enhance similarity between query and its positive. SLR uses a positive of a query to estimate semantic similarity between a query and its positive and negatives, and combines estimated similarity with vanilla label assignment in contrastive learning to iteratively generate more accurate and informative soft labels. We theoretically show that our SLR can exactly recover the true semantic labels of label-corrupted data, and supervises networks to achieve zero prediction error on classification tasks. MM randomly combines queries and positives to increase semantic similarity between the generated virtual queries and their positives so as to improves label accuracy. Experimental results on CIFAR10, ImageNet, VOC and COCO show the effectiveness of our method. PyTorch code and model will be released online.
The state-of-the-art unsupervised contrastive visual representation learning methods that have emerged recently (SimCLR, MoCo, SwAV) all make use of data augmentations in order to construct a pretext task of instant discrimination consisting of simil ar and dissimilar pairs of images. Similar pairs are constructed by randomly extracting patches from the same image and applying several other transformations such as color jittering or blurring, while transformed patches from different image instances in a given batch are regarded as dissimilar pairs. We argue that this approach can result similar pairs that are textit{semantically} dissimilar. In this work, we address this problem by introducing a textit{batch curation} scheme that selects batches during the training process that are more inline with the underlying contrastive objective. We provide insights into what constitutes beneficial similar and dissimilar pairs as well as validate textit{batch curation} on CIFAR10 by integrating it in the SimCLR model.
Modern 3D human pose estimation techniques rely on deep networks, which require large amounts of training data. While weakly-supervised methods require less supervision, by utilizing 2D poses or multi-view imagery without annotations, they still need a sufficiently large set of samples with 3D annotations for learning to succeed. In this paper, we propose to overcome this problem by learning a geometry-aware body representation from multi-view images without annotations. To this end, we use an encoder-decoder that predicts an image from one viewpoint given an image from another viewpoint. Because this representation encodes 3D geometry, using it in a semi-supervised setting makes it easier to learn a mapping from it to 3D human pose. As evidenced by our experiments, our approach significantly outperforms fully-supervised methods given the same amount of labeled data, and improves over other semi-supervised methods while using as little as 1% of the labeled data.
Recently deep learning has achieved significant progress on point cloud analysis tasks. Learning good representations is of vital importance to these tasks. Most current methods rely on massive labelled data for training. We here propose a point disc riminative learning method for unsupervised representation learning on 3D point clouds, which can learn local and global geometry features. We achieve this by imposing a novel point discrimination loss on the middle level and global level point features produced in the backbone network. This point discrimination loss enforces the features to be consistent with points belonging to the shape surface and inconsistent with randomly sampled noisy points. Our method is simple in design, which works by adding an extra adaptation module and a point consistency module for unsupervised training of the encoder in the backbone network. Once trained, these two modules can be discarded during supervised training of the classifier or decoder for down-stream tasks. We conduct extensive experiments on 3D object classification, 3D part segmentation and shape reconstruction in various unsupervised and transfer settings. Both quantitative and qualitative results show that our method learns powerful representations and achieves new state-of-the-art performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا