ﻻ يوجد ملخص باللغة العربية
The discretization of surface intrinsic PDEs has challenges that one might not face in the flat space. The closest point method (CPM) is an embedding method that represents surfaces using a function that maps points in the flat space to their closest points on the surface. This mapping brings intrinsic data onto the embedding space, allowing us to numerically approximate PDEs by the standard methods in the tubular neighborhood of the surface. Here, we solve the surface intrinsic positive Helmholtz equation by the CPM paired with finite differences which usually yields a large, sparse, and non-symmetric system. Domain decomposition methods, especially Schwarz methods, are robust algorithms to solve these linear systems. While there have been substantial works on Schwarz methods, Schwarz methods for solving surface differential equations have not been widely analyzed. In this work, we investigate the convergence of the CPM coupled with Schwarz method on 1-manifolds in d-dimensional space of real numbers.
In contrast with classical Schwarz theory, recent results in computational chemistry have shown that for special domain geometries, the one-level parallel Schwarz method can be scalable. This property is not true in general, and the issue of quantify
In this article, we analyse the convergence behaviour and scalability properties of the one-level Parallel Schwarz method (PSM) for domain decomposition problems in which the boundaries of many subdomains lie in the interior of the global domain. Suc
In this paper, we propose an overlapping additive Schwarz method for total variation minimization based on a dual formulation. The $O(1/n)$-energy convergence of the proposed method is proven, where $n$ is the number of iterations. In addition, we in
Regula Falsi, or the method of false position, is a numerical method for finding an approximate solution to f(x) = 0 on a finite interval [a, b], where f is a real-valued continuous function on [a, b] and satisfies f(a)f(b) < 0. Previous studies prov
Using deep neural networks to solve PDEs has attracted a lot of attentions recently. However, why the deep learning method works is falling far behind its empirical success. In this paper, we provide a rigorous numerical analysis on deep Ritz method