ﻻ يوجد ملخص باللغة العربية
In contrast with classical Schwarz theory, recent results in computational chemistry have shown that for special domain geometries, the one-level parallel Schwarz method can be scalable. This property is not true in general, and the issue of quantifying the lack of scalability remains an open problem. Even though heuristic explanations are given in the literature, a rigorous and systematic analysis is still missing. In this short manuscript, we provide a first rigorous result that precisely quantifies the lack of scalability of the classical one-level parallel Schwarz method for the solution to the one-dimensional Laplace equation. Our analysis technique provides a possible roadmap for a systematic extension to more realistic problems in higher dimensions.
In this article, we analyse the convergence behaviour and scalability properties of the one-level Parallel Schwarz method (PSM) for domain decomposition problems in which the boundaries of many subdomains lie in the interior of the global domain. Suc
The discretization of surface intrinsic PDEs has challenges that one might not face in the flat space. The closest point method (CPM) is an embedding method that represents surfaces using a function that maps points in the flat space to their closest
The Sinc-Nystr{o}m method in time is a high-order spectral method for solving evolutionary differential equations and it has wide applications in scientific computation. But in this method we have to solve all the time steps implicitly at one-shot, w
In this paper, we propose an overlapping additive Schwarz method for total variation minimization based on a dual formulation. The $O(1/n)$-energy convergence of the proposed method is proven, where $n$ is the number of iterations. In addition, we in
In this work we investigate the parallel scalability of the numerical method developed in Guthrey and Rossmanith [The regionally implicit discontinuous Galerkin method: Improving the stability of DG-FEM, SIAM J. Numer. Anal. (2019)]. We develop an im