ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneous Neural Network Approximations in Sobolev Spaces

162   0   0.0 ( 0 )
 نشر من قبل Sean Hon
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish in this work approximation results of deep neural networks for smooth functions measured in Sobolev norms, motivated by recent development of numerical solvers for partial differential equations using deep neural networks. The error bounds are explicitly characterized in terms of both the width and depth of the networks simultaneously. Namely, for $fin C^s([0,1]^d)$, we show that deep ReLU networks of width $mathcal{O}(Nlog{N})$ and of depth $mathcal{O}(Llog{L})$ can achieve a non-asymptotic approximation rate of $mathcal{O}(N^{-2(s-1)/d}L^{-2(s-1)/d})$ with respect to the $mathcal{W}^{1,p}([0,1]^d)$ norm for $pin[1,infty)$. If either the ReLU function or its square is applied as activation functions to construct deep neural networks of width $mathcal{O}(Nlog{N})$ and of depth $mathcal{O}(Llog{L})$ to approximate $fin C^s([0,1]^d)$, the non-asymptotic approximation rate is $mathcal{O}(N^{-2(s-n)/d}L^{-2(s-n)/d})$ with respect to the $mathcal{W}^{n,p}([0,1]^d)$ norm for $pin[1,infty)$.



قيم البحث

اقرأ أيضاً

Artificial neural networks (ANNs) have become a very powerful tool in the approximation of high-dimensional functions. Especially, deep ANNs, consisting of a large number of hidden layers, have been very successfully used in a series of practical rel evant computational problems involving high-dimensional input data ranging from classification tasks in supervised learning to optimal decision problems in reinforcement learning. There are also a number of mathematical results in the scientific literature which study the approximation capacities of ANNs in the context of high-dimensional target functions. In particular, there are a series of mathematical results in the scientific literature which show that sufficiently deep ANNs have the capacity to overcome the curse of dimensionality in the approximation of certain target function classes in the sense that the number of parameters of the approximating ANNs grows at most polynomially in the dimension $d in mathbb{N}$ of the target functions under considerations. In the proofs of several of such high-dimensional approximation results it is crucial that the involved ANNs are sufficiently deep and consist a sufficiently large number of hidden layers which grows in the dimension of the considered target functions. It is the topic of this work to look a bit more detailed to the deepness of the involved ANNs in the approximation of high-dimensional target functions. In particular, the main result of this work proves that there exists a concretely specified sequence of functions which can be approximated without the curse of dimensionality by sufficiently deep ANNs but which cannot be approximated without the curse of dimensionality if the involved ANNs are shallow or not deep enough.
We prove that a variant of the classical Sobolev space of first-order dominating mixed smoothness is equivalent (under a certain condition) to the unanchored ANOVA space on $mathbb{R}^d$, for $d geq 1$. Both spaces are Hilbert spaces involving weight functions, which determine the behaviour as different variables tend to $pm infty$, and weight parameters, which represent the influence of different subsets of variables. The unanchored ANOVA space on $mathbb{R}^d$ was initially introduced by Nichols & Kuo in 2014 to analyse the error of quasi-Monte Carlo (QMC) approximations for integrals on unbounded domains; whereas the classical Sobolev space of dominating mixed smoothness was used as the setting in a series of papers by Griebel, Kuo & Sloan on the smoothing effect of integration, in an effort to develop a rigorous theory on why QMC methods work so well for certain non-smooth integrands with kinks or jumps coming from option pricing problems. In this same setting, Griewank, Kuo, Leovey & Sloan in 2018 subsequently extended these ideas by developing a practical smoothing by preintegration technique to approximate integrals of such functions with kinks or jumps. We first prove the equivalence in one dimension (itself a non-trivial task), before following a similar, but more complicated, strategy to prove the equivalence for general dimensions. As a consequence of this equivalence, we analyse applying QMC combined with a preintegration step to approximate the fair price of an Asian option, and prove that the error of such an approximation using $N$ points converges at a rate close to $1/N$.
Neural Networks (NNs) are the method of choice for building learning algorithms. Their popularity stems from their empirical success on several challenging learning problems. However, most scholars agree that a convincing theoretical explanation for this success is still lacking. This article surveys the known approximation properties of the outputs of NNs with the aim of uncovering the properties that are not present in the more traditional methods of approximation used in numerical analysis. Comparisons are made with traditional approximation methods from the viewpoint of rate distortion. Another major component in the analysis of numerical approximation is the computational time needed to construct the approximation and this in turn is intimately connected with the stability of the approximation algorithm. So the stability of numerical approximation using NNs is a large part of the analysis put forward. The survey, for the most part, is concerned with NNs using the popular ReLU activation function. In this case, the outputs of the NNs are piecewise linear functions on rather complicated partitions of the domain of $f$ into cells that are convex polytopes. When the architecture of the NN is fixed and the parameters are allowed to vary, the set of output functions of the NN is a parameterized nonlinear manifold. It is shown that this manifold has certain space filling properties leading to an increased ability to approximate (better rate distortion) but at the expense of numerical stability. The space filling creates a challenge to the numerical method in finding best or good parameter choices when trying to approximate.
In this paper, we develop a new neural network family based on power series expansion, which is proved to achieve a better approximation accuracy in comparison with existing neural networks. This new set of neural networks embeds the power series exp ansion (PSE) into the neural network structure. Then it can improve the representation ability while preserving comparable computational cost by increasing the degree of PSE instead of increasing the depth or width. Both theoretical approximation and numerical results show the advantages of this new neural network.
Deep learning is a powerful tool for solving nonlinear differential equations, but usually, only the solution corresponding to the flattest local minimizer can be found due to the implicit regularization of stochastic gradient descent. This paper pro poses a network-based structure probing deflation method to make deep learning capable of identifying multiple solutions that are ubiquitous and important in nonlinear physical models. First, we introduce deflation operators built with known solutions to make known solutions no longer local minimizers of the optimization energy landscape. Second, to facilitate the convergence to the desired local minimizer, a structure probing technique is proposed to obtain an initial guess close to the desired local minimizer. Together with neural network structures carefully designed in this paper, the new regularized optimization can converge to new solutions efficiently. Due to the mesh-free nature of deep learning, the proposed method is capable of solving high-dimensional problems on complicated domains with multiple solutions, while existing methods focus on merely one or two-dimensional regular domains and are more expensive in operation counts. Numerical experiments also demonstrate that the proposed method could find more solutions than exiting methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا